Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamaguchi, Hisato*; Yusa, Ryunosuke*; Wang, G.*; Pettes, M. T.*; Liu, F.*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Abukawa, Tadashi*; Moody, N. A.*; Ogawa, Shuichi*
Applied Physics Letters, 122(14), p.141901_1 - 141901_7, 2023/04
Times Cited Count:6 Percentile:76.16(Physics, Applied)A lowering of work function for LaB by monolayer hexagonal BN coating is reported. Photoemission electron microcopy (PEEM) and thermionic emission electron microscopy (TEEM) both revealed that the hBN coated region of a LaB(100) single crystal has lower work function compared to the bare (i.e., non-coated) and graphene coated regions. A larger decrease of work function for the hBN coated LaB(100) compared to graphene coated LaB(100) was qualitatively supported by our density functional theory (DFT) calculations. Adding an oxide layer in the calculations improved consistency between the calculation and experimental results. We followed up our calculations with synchrotron-radiation X-ray photoelectron spectroscopy (SR-XPS) and confirmed the presence of an oxide layer on our LaB.
Matsuoka, Hideki*; Barnes, S. E.*; Ieda, Junichi; Maekawa, Sadamichi; Bahramy, M. S.*; Saika, B. K.*; Takeda, Yukiharu; Wadachi, Hiroki*; Wang, Y.*; Yoshida, Satoshi*; et al.
Nano Letters, 21(4), p.1807 - 1814, 2021/02
Times Cited Count:17 Percentile:77.05(Chemistry, Multidisciplinary)Xu, Z.*; Dai, G.*; Li, Y.*; Yin, Z.*; Rong, Y.*; Tian, L.*; Liu, P.*; Wang, H.*; Xing, L.*; Wei, Y.*; et al.
npj Quantum Materials (Internet), 5(1), p.11_1 - 11_7, 2020/02
Times Cited Count:4 Percentile:35.36(Materials Science, Multidisciplinary)Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:9 Percentile:55.81(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Ogawa, Shuichi*; Yusa, Ryunosuke*; Wang, G.*; Pettes, M. T.*; Liu, F.*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Abukawa, Tadashi*; Moody, N. A.*; Yamaguchi, Hisato*
no journal, ,
Lanthanum hexaboride (LaB) has a low work-function and is widely used as a thermionic cathode. For practical application, further reduction of its work-function and high durability have been required. In this study, the effect of 2D material coating materials (graphene and hexagonal boron nitride (hBN)) prepared by a wet-transfer method on the work-function of LaB(100) was studied by using photoelectron emission microscopy (PEEM), synchrotron radiation photoemission spectroscopy, Raman spectroscopy, atomic force microscopy and DFT calculations. PEEM images for samples after 905C heating clearly showed strong photoemission in the hBN coating region. DFT calculations indicated that the work-function increases in graphene due to the inward dipole formation, while the work function decreases in hBN due to the outward dipole forming at the interface.
Ogawa, Shuichi*; Yusa, Ryunosuke*; Wang, G.*; Pettes, M. T.*; Liu, F.*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Abukawa, Tadashi*; Moody, N. A.*; Yamaguchi, Hisato*
no journal, ,
LaB has been used as a thermionic cathode due to its low work function, but it is also expected to be used as a photocathode by further lowering the work function. Here, we report photoemission electron microcopy (PEEM), thermionic emission electron microscopy (TEEM) and synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) study on the work function change of LaB by coating with two-dimensional materials (graphene and hexagonal boron nitride (hBN)). A larger decrease of work function for the hBN coated LaB(100) compared to graphene coated LaB(100) was observed and qualitatively explained by our density functional theory (DFT) calculations.