Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research and examination of seismic safety evaluation and function maintenance for important equipment in nuclear facilities

Furuya, Osamu*; Fujita, Satoshi*; Muta, Hitoshi*; Otori, Yasuki*; Itoi, Tatsuya*; Okamura, Shigeki*; Minagawa, Keisuke*; Nakamura, Izumi*; Fujimoto, Shigeru*; Otani, Akihito*; et al.

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 6 Pages, 2021/07

Since the Fukushima accident, with the higher safety requirements of nuclear facilities in Japan, suppliers, manufacturers and academic societies have been actively considering the reconstruction of the safety of nuclear facilities from various perspectives. The Nuclear Regulation Authority has formulated new regulatory standards and is in operation. The new regulatory standards are based on defense in depth, and have significantly raised the levels of natural hazards and have requested to strengthen the countermeasures from the perspective of preventing the simultaneous loss of safety functions due to common factors. Facilities for dealing with specific serious accidents are required to have robustness to ensure functions against earthquakes that exceed the design standards to a certain extent. In addition, since the probabilistic risk assessment (PRA) and the safety margin evaluation are performed to include the range beyond the design assumption in the safety improvement evaluation, it is very important to extent the special knowledge in the strength of important equipment for seismic safety. This paper summarizes the research and examination results of specialized knowledge on the concept of maintaining the functions of important seismic facilities and the damage index to be considered by severe earthquakes. In the other paper, the study on reliability of seismic capacity analysis for important equipment in nuclear facilities will be reported.

Journal Articles

Appropriate damping on seismic design analysis for inelastic response assessment of piping

Watakabe, Tomoyoshi; Morishita, Masaki

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 6 Pages, 2018/07

A new Code Case for seismic design of piping is now under development in the framework of JSME Nuclear Codes and Standards as an alternative rule to the current design rule. Simplified analysis with an additional damping taking the response reduction due to plasticity into account is now under consideration to incorporate the convenience in design. In this study, a series of analysis was made to see the adequacy of the simplified inelastic analysis. Design margins contained in the current design analysis method composed of response spectrum analysis and stress factors was quantitatively assessed in the view point of additional damping.

Journal Articles

Application of JSME Seismic Code Case by elastic-plastic response analysis to practical piping system

Otani, Akihito*; Kai, Satoru*; Kaneko, Naoaki*; Watakabe, Tomoyoshi; Ando, Masanori; Tsukimori, Kazuyuki*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

This paper demonstrates an application result of the JSME Seismic Code Case to an actual complex piping system. The secondary coolant piping system of Japanese Fast Breeder Reactor, Monju, was selected as a representative of the complex piping systems. The elastic-plastic time history analysis for the piping system was performed and the piping system has been evaluated according to the JSME Seismic Code Case. The evaluation by the Code Case provides a reasonable result in terms of the piping fatigue evaluation that governs seismic integrity of piping systems.

Journal Articles

Research and development of thick rubber bearing for SFR; Aging properties tests of semi full-scale thick rubber bearing

Watakabe, Tomoyoshi; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Somaki, Takahiro*; Morobishi, Ryota*; Sakurai, Yu*; Kato, Koji*

Nihon Kikai Gakkai Rombunshu (Internet), 83(850), p.16-00444_1 - 16-00444_14, 2017/06

A seismic isolation system composed of a thick rubber bearing and an oil damper has been developed for Sodium-Cooled Fast Reactor. This paper focused on the aging properties of thick rubber bearings, such as basic mechanical properties and ultimate strength. Aging of the rubber bearings was reproduced using thermal degradation based on Arrhenius law.

Journal Articles

Development of seismic isolation systems for sodium-cooled fast reactors in Japan

Kawasaki, Nobuchika; Watakabe, Tomoyoshi; Wakai, Takashi; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*

Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 8 Pages, 2016/07

Sodium-cooled Fast Reactors (SFRs) have components with thinner walls as compared with light water reactors, although Japan is an earthquake-prone country. Thus, seismic isolation systems have been conventionally employed in SFR system design to reduce seismic forces on the systems in Japan. Implementation of seismic design in the reactor core and buckling design in the reactor vessel requires 8 Hz (or less) vertical frequency's isolation system being applied. This paper introduces three isolation concepts to achieve the frequency. The isolation systems, which enable vertical 8 Hz natural frequency, comprise thicker laminated rubber bearings (TRBs). By combining coned disk springs with TRBs, vertical natural frequency is in a range from roughly 3 Hz to 5 Hz. Combining pneumatic springs to RBs and adding the rocking suppression system, vertical natural frequency becomes under 1 Hz. All isolation systems need horizontal damping like oil dampers. A vertical 8 Hz isolation system with TRBs and oil dampers is under development in Japan as a principal isolation concept. The reasons of choosing this system are its simplicity and the number of developing issues. Since TRBs and oil dampers are basic isolation elements, they can be applied to other isolation systems. The response acceleration of 5 Hz vertical isolation is 50% of that of 8 Hz based on the analytical survey. A series of static tests of coned disk springs was carried out to confirm design equations. Based on these knowledge, 5 Hz vertical isolation system with TRBs and the coned disk springs can be designed. The response acceleration of 1 Hz vertical isolation is 10% of that of 8 Hz. A rocking suppression system was studied in the past, and the further simplification of this system is the largest challenge for this concept. These three isolation concepts are isolation candidates for SFRs in Japan. To obtain enough seismic margins for each plant site, these isolation systems need to be developed.

Journal Articles

Development on rubber bearings for sodium-cooled fast reactor, 4; Aging properties of a half scale thick rubber bearings based on breaking test

Watakabe, Tomoyoshi; Yamamoto, Tomohiko; Fukasawa, Tsuyoshi*; Okamura, Shigeki*; Somaki, Takahiro*; Morobishi, Ryota*; Sakurai, Yu*; Kato, Koji*

Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 8 Pages, 2016/07

A seismic isolation system composed of a thick rubber bearing and an oil damper has been developed for Sodium cooled Fast Reactor. One of the advantages of the isolation system is employing the thick rubber bearing in order to realize the longer vertical natural period of a plant, and it leads to mitigation of seismic loads to mechanical components. Rubber bearing technology has progressed based on many past studies, but test data regarding an aging effect is not enough. Also, there is no data of linear strain limit and breaking behavior for the thick rubber bearing after aging. This paper focuses on aging properties of the thick rubber bearing, such as basic mechanical properties and ultimate strength. An aging promote test of the thick rubber bearing was performed by using 1/2 scale and 1/8 scale rubber bearings. Aging of the rubber bearing was reproduced by thermal degradation, where the target aging period was 30 years and 60 years. The load deflection curves of the thick rubber bearing after aging were obtained through the horizontal and vertical static loading tests, and the aging effect was evaluated by comparing with the initial mechanical properties.

Journal Articles

Investigation on ultimate strength of thin wall tee pipe for sodium cooled fast reactor under seismic loading

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Otani, Akihito*; Moriizumi, Makoto; Kaneko, Naoaki*

Mechanical Engineering Journal (Internet), 3(3), p.16-00054_1 - 16-00054_11, 2016/06

It is important to investigate the failure mode and ultimate strength of piping components in order to evaluate the seismic integrity of piping. Many failure tests of thick wall and high pressure piping for Light Water Reactors (LWRs) have been conducted, and the results suggest that the failure mode that should be considered in the design of a thick wall piping for LWRs under seismic loading is low cycle fatigue. On the other hand, Sodium cooled Fast Reactors (SFRs) is thin wall when compared to LWRs piping. Failure tests of a thin wall piping are necessary because past failure tests for LWRs piping are not enough to discuss failure behavior of a thin wall piping. Therefore, this present work investigated the failure mode and the ultimate strength of thin wall tees.

Journal Articles

Ultimate strength of a thin wall elbow for sodium cooled fast reactors under seismic loads

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Kitamura, Seiji; Morishita, Masaki

Journal of Pressure Vessel Technology, 138(2), p.021801_1 - 021801_10, 2016/04

 Times Cited Count:4 Percentile:30.99(Engineering, Mechanical)

With a purpose of identifying the failure mode and the associating ultimate strength of piping components against seismic integrity, many kinds of failure tests have been conducted for thick wall piping for Light Water Reactors (LWRs). However, there are little failure test data on thin wall piping for Sodium Cooled Fast Reactors (SFRs). In this paper, a series of failure tests on thin wall elbows for SFRs is presented. Based on the tests, the failure mode of a thin wall piping component under seismic loads was identified to be fatigue. The safety margin included in the current design methodology was clarified quantitatively.

Journal Articles

Investigation on ultimate strength of thin wall tee pipe for sodium cooled fast reactor under seismic loading

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Otani, Akihito*; Moriizumi, Makoto; Kaneko, Naoaki*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05

Journal Articles

Validation of nonlinear FEA models of a thin-walled elbow under extreme loading conditions for sodium-cooled fast reactors

Watakabe, Tomoyoshi; Jin, C.*; Usui, Yoshiya*; Sakai, Shinkichi*; Wakai, Takashi; Oshika, Junji*; Tsukimori, Kazuyuki

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

Journal Articles

Study on strength of thin-walled tee pipe for fast breeder reactors under seismic loading

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Otani, Akihito*; Moriizumi, Makoto; Kaneko, Naoaki*

Proceedings of 2014 ASME Pressure Vessels and Piping Conference (PVP 2014) (DVD-ROM), 8 Pages, 2014/07

In recent years, earthquakes over design condition were observed in Japan. Confirming the ultimate strength and design safety margin of mechanical components is important for the seismic integrity. This study focused on piping components, and it was one of the most important mechanical components for protecting boundary of coolant. Failure tests of thick-walled piping components for Light Water Reactors (LWRs) described previously in the literature. According to these tests, the failure mode of thick-walled piping components under seismic cyclic loading was low cycle fatigue. However, failure tests have scarcely been performed on thin-walled piping components pressurized at low levels for Fast Breeder Reactors (FBRs). This paper presents dynamic failure tests of thin-walled piping components in FBRs. Based on the test results, the failure mode, the ultimate strength, and the elastic-plastic behavior are discussed.

Journal Articles

Study on piping response under multiple excitation (validation for elastic-plastic analysis of piping)

Kai, Satoru*; Watakabe, Tomoyoshi; Kaneko, Naoaki*; Tochiki, Kunihiro*; Moriizumi, Makoto; Tsukimori, Kazuyuki

Proceedings of 2014 ASME Pressure Vessels and Piping Conference (PVP 2014) (DVD-ROM), 10 Pages, 2014/07

Piping in a nuclear power plant is usually laid across several floors of a single building or adjacent buildings, and is supported at many points. As the piping is excited by a large earthquake through multiple supporting points, seismic response analysis by multiple excitations within the range of plastic deformation of piping material is necessary to obtain the precise seismic response of the piping. This paper reports the validation results of the seismic elastic-plastic time history analysis of piping compared with the results of the shaking test of a 3-dimensional piping model under a plastic deformation range using triple uni-axial shake table.

Journal Articles

Study on piping response under multiple excitations; Triple shaking table test of piping having three-supporting anchors

Watakabe, Tomoyoshi; Kaneko, Naoaki*; Aida, Shigekazu*; Otani, Akihito*; Tsukimori, Kazuyuki; Moriizumi, Makoto; Kitamura, Seiji

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 8 Pages, 2013/08

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many anchors. As the piping is excited by multiple inputs from the supporting anchors during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few tests involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model.

Journal Articles

Study on piping response under multiple excitation; Validation for multiple excitation analysis of piping

Kai, Satoru*; Watakabe, Tomoyoshi; Kaneko, Naoaki*; Tochiki, Kunihiro*; Moriizumi, Makoto; Tsukimori, Kazuyuki

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 10 Pages, 2013/08

The piping in a nuclear power plant is laid across multiple floors of a single building or multiple buildings which support the piping at many points. As the piping is excited by multiple-inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, only a few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation tests. This paper reports the validation results of the multiple excitation analysis of piping compared with the results of the multiple excitations shaking test using triple uni-axial shaking table and a 3-dimensional piping model.

Journal Articles

Behavior of the energy of vibration failure experiment by using a 2-mass system model

Seki, Hajime*; Fujita, Satoshi*; Minagawa, Keisuke*; Kitamura, Seiji; Watakabe, Tomoyoshi

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 8 Pages, 2013/08

When we study the behavior of the pipes during an earthquake, the most important damage doesn't come from the maximal load by itself, but from the accumulation of the fatigue damage caused by the repetition of the cyclic load. Therefore, from the point of view of seismic design evaluation methods, techniques that can quantitatively assess the probability of fatigue failure of mechanical structures are needed. The relationship between failure and energy is evaluated, and examined by focusing on the Energy Balance Method said to be effective as an earthquake response analysis technique in the present. This study carries out failure experiments using 2-mass system model based on Energy Balance Method. Furthermore, we focus on the strain from the vicinity of broken point as local response.

Journal Articles

Study on ultimate strength of thin-wall piping components for fast breeder reactors under seismic loading

Watakabe, Tomoyoshi; Kitamura, Seiji; Tsukimori, Kazuyuki; Morishita, Masaki

Transactions of 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT-22) (CD-ROM), 10 Pages, 2013/08

It is important to confirm failure modes and safety margin until ultimate strength of piping components from the point of view of seismic safety. Though, many dynamic failure tests of the thick-wall piping components for Light Water Reactors (LWRs) have been performed, there are little dynamic failure test data of the thin-wall pipe for Fast Breeder Reactors (FBRs). This paper presents a series of dynamic failure tests of thin-wall elbows with the diameter/thickness ratio close to that of the main piping of FBRs and discusses about vibration characteristics in elastic-plastic region, failure modes under dynamic load and the results of piping design evaluation for the test model. Moreover, the test results were compared to the Finite Element Analysis (FEA) results.

Journal Articles

Study on piping response under multiple excitation, 1; Triple shaking table test of piping having three-supporting points

Watakabe, Tomoyoshi; Kaneko, Naoaki*; Aida, Shigekazu*; Otani, Akihito*; Moriizumi, Makoto*; Tsukimori, Kazuyuki; Kitamura, Seiji

Proceedings of 2013 ASME Pressure Vessels and Piping Conference (PVP 2013) (DVD-ROM), 8 Pages, 2013/07

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model.

Journal Articles

Study on piping response under multiple excitation, 2; Validation for multiple analysis of piping

Kai, Satoru*; Watakabe, Tomoyoshi; Kaneko, Naoaki*; Tochiki, Kunihiro*; Moriizumi, Makoto; Tsukimori, Kazuyuki

Proceedings of 2013 ASME Pressure Vessels and Piping Conference (PVP 2013) (DVD-ROM), 9 Pages, 2013/07

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple excitation test. This paper reports the validation result of the multiple excitation analysis of piping compared with the results of the multiple excitations shaking test by using triple uni-axial shaking table and a 3-dimensional piping model (89.1 mm diameter and 5.5 mm thickness).

Oral presentation

Investigation on response behavior of piping subjected to multiple input, 1; Response of piping model supported by two point

Watakabe, Tomoyoshi; Kitamura, Seiji; Tsukimori, Kazuyuki; Moriizumi, Makoto*; Miyamoto, Akinori*; Morishita, Masaki

no journal, , 

Piping in a nuclear power plant puts across each floor at the same building or between two buildings, and it has many supported points. Therefore, the piping should be as a model subjected to multiple inputs in seismic analysis, but there isn't almost knowledge concerned with analysis for multiple inputs. In this paper, the analysis by using TDOF model having two supported points, and the shaking test by using U-bend piping test piece having two supported points was performed to investigate response of piping subjected to multiple inputs. As a result, the possibility of response analysis for piping subjected to multiple inputs was confirmed.

Oral presentation

Fundamental study on quantitative evaluation of fracture energy

Yamanaka, Takahiro*; Fujita, Satoshi*; Minagawa, Keisuke*; Kanaeda, Shingo*; Kitamura, Seiji; Watakabe, Tomoyoshi

no journal, , 

no abstracts in English

27 (Records 1-20 displayed on this page)