Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Controlled release of radioactive krypton gas

Watanabe, Kazuki; Kimura, Norimichi*; Okada, Jumpei; Furuuchi, Yuta; Kuwana, Hideharu*; Otani, Takehisa; Yokota, Satoru; Nakamura, Yoshinobu

JAEA-Technology 2023-010, 29 Pages, 2023/06

JAEA-Technology-2023-010.pdf:3.12MB

The Krypton Recovery Development Facility reached an intended technical target (krypton purity of over 90% and recovery rate of over 90%) by separation and rectification of krypton gas from receiving off-gas produced by the shearing and the dissolution process in the spent fuel reprocessing at the Tokai Reprocessing Plant (TRP) between 1988 and 2001. In addition, the feasibility of the technology was confirmed through immobilization test with ion-implantation in a small test vessel from 2000 to 2002, using a part of recovered krypton gas. As there were no intentions to use the remaining radioactive krypton gas in the krypton storage cylinders, we planned to release this gas by controlling the release amount from the main stack, and conducted it from February 14 to April 26, 2022. In this work, all the radioactive krypton gas in the cylinders (about 7.1$$times$$10$$^{5}$$ GBq) was released at the rate of 50 GBq/min or less lower than the maximum release rate from the main stuck stipulated in safety regulations (3.7$$times$$10$$^{3}$$ GBq/min). Then, the equipment used in the controlled release of radioactive krypton gas and the main process (all systems, including branch pipes connected to the main process) were cleaned with nitrogen gas. Although there were delays due to weather, we were able to complete the controlled release of radioactive krypton gas by the end of April 2022, as originally targeted without any problems such as equipment failure.

Journal Articles

Magnetic Bragg dip and Bragg edge in neutron transmission spectra of typical spin superstructures

Mamiya, Hiroaki*; Oba, Yojiro; Terada, Noriki*; Watanabe, Norimichi*; Hiroi, Kosuke; Shinohara, Takenao; Oikawa, Kenichi

Scientific Reports (Internet), 7(1), p.15516_1 - 15516_8, 2017/11

 Times Cited Count:3 Percentile:17.1(Multidisciplinary Sciences)

no abstracts in English

Oral presentation

Spin structural analyses using magnetic Bragg dips and edges

Mamiya, Hiroaki*; Oba, Yojiro; Terada, Noriki*; Watanabe, Norimichi*; Hiroi, Kosuke; Shinohara, Takenao; Oikawa, Kenichi

no journal, , 

no abstracts in English

Oral presentation

Magnetic Bragg dip and Bragg edge in neutron transmission spectra of a typical spin order

Mamiya, Hiroaki*; Oba, Yojiro; Terada, Noriki*; Watanabe, Norimichi*; Hiroi, Kosuke; Shinohara, Takenao; Oikawa, Kenichi

no journal, , 

no abstracts in English

Oral presentation

Magnetic Bragg dip and Bragg edge in neutron transmission spectra of a typical spin order

Mamiya, Hiroaki*; Oba, Yojiro; Terada, Noriki*; Watanabe, Norimichi*; Hiroi, Kosuke; Shinohara, Takenao; Oikawa, Kenichi

no journal, , 

So far, neutron diffractometry has been a unique tool to clarify spin arrangements. However, it is not easy to measure the neutron diffraction under extreme sample environments such as high pressure and high magnetic field because such environments often require large equipments surrounding the samples and prevent the measurement of the scattered neutron. To overcome this issue, we focused on neutron transmission spectra, which includes the attenuation caused by the neutron diffraction. The neutron transmission spectra can be easily measured using only a transmission monitor without scattering detector. This presentation reports the first observation of the neutron transmission spectra generated by a typical spin order in nickel oxides. The results clearly show the neutron transmission spectroscopy is a promising tool for the study of the spin arrangements.

5 (Records 1-5 displayed on this page)
  • 1