Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsumoto, Yoshihiro*; Oikawa, Kenichi; Watanabe, Kenichi*; Sato, Hirotaka*; Parker, J. D.*; Shinohara, Takenao; Kiyanagi, Yoshiaki*
Journal of Archaeological Science; Reports, 58, p.104729_1 - 104729_10, 2024/10
Ishikawa, Akihisa; Tanaka, Hiroki*; Nakamura, Satoshi*; Kumada, Hiroaki*; Sakurai, Yoshinori*; Watanabe, Kenichi*; Yoshihashi, Sachiko*; Tanagami, Yuki*; Uritani, Akira*; Kiyanagi, Yoshiaki*
Journal of Radiation Research (Internet), 11 Pages, 2024/10
Times Cited Count:0Watanabe, Kenichi*; Sugai, Yusuke*; Hasegawa, Sota*; Tanaka, Seishiro*; Hitomi, Keitaro*; Nogami, Mitsuhiro*; Shinohara, Takenao; Su, Y. H.; Parker, J. D.*; Kockelmann, W.*
Scientific Reports (Internet), 14, p.25224_1 - 25224_13, 2024/10
Sato, Nobuaki*; Kameo, Yutaka; Sato, Soichi; Kumagai, Yuta; Sato, Tomonori; Yamamoto, Masahiro*; Watanabe, Yutaka*; Nagai, Takayuki; Niibori, Yuichi*; Watanabe, Masayuki; et al.
Introduction to Dismantling and Decommissioning Chemistry, 251 Pages, 2024/09
This book focuses on the dismantling and decommissioning of nuclear facilities and reactors that have suffered severe accidents. In Part 1, we introduce basic aspects ranging from fuel chemistry, analytical chemistry, radiation chemistry, corrosion, and decontamination chemistry to waste treatment and disposal. Then, Part 2 covers the chemistry involved in the decommissioning of various nuclear facilities, and discusses what chemical approaches are necessary and possible for the decommissioning of TEPCO's Fukushima Dai-ichi Nuclear Power Plants, how decommissioning should be carried out, and what kind of research and development and also human resource development are required for this.
Arai, Yoichi; Watanabe, So; Watanabe, Masayuki; Arai, Tsuyoshi*; Katsuki, Kenta*; Agou, Tomohiro*; Fujikawa, Hisaharu*; Takeda, Keisuke*; Fukumoto, Hiroki*; Hoshina, Hiroyuki*; et al.
Nuclear Instruments and Methods in Physics Research B, 554, p.165448_1 - 165448_10, 2024/09
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Nakada, Hibiki*; Nakayama, Shinsuke; Yoshida, Kazuki; Watanabe, Yukinobu*; Ogata, Kazuyuki*
Physical Review C, 110(1), p.014616_1 - 014616_8, 2024/07
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Previous studies have revealed the importance of introducing surface correction into a phenomenological model for inclusive and reactions, and these findings have contributed significantly to the improvement of nuclear data evaluation. However, the necessity for the surface correction in an inclusive reaction has hardly been investigated. The energy spectra and their radial distributions for the and reactions are calculated by the one-step semiclassical distorted wave model. The radial distribution of the energy spectra for the reaction is shifted toward the outer region of the nucleus compared to the reaction. Based on this finding, we consider a larger surface correction into a phenomenological model for the reaction than that for the reaction, and calculated values reproduce the experimental spectra well. The peripherality of the reaction is more prominent than that of the reaction. The stronger surface correction thus should be introduced for the reaction than for the reaction.
Nemoto, Takahiro; Fujiwara, Yusuke; Arakawa, Ryoki; Choyama, Yuya; Nagasumi, Satoru; Hasegawa, Toshinari; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; et al.
JAEA-Technology 2024-003, 17 Pages, 2024/06
In order to investigate the cause of the increase in differential pressure in the primary helium circulator filter that occurred during the RS-14 cycle, a clogged filter was investigated. As a result of the investigation, deposits caused by silicone oil were confirmed on the surface of the filter element. These results revealed that the cause of filter clogging was silicone oil mixed into the primary system due to performance deterioration of the charcoal filter in the gas circulator of primary helium purification system. As a measure to prevent the recurrence of this event, in addition to the conventional management based on operating hours for replacing of charcoal filter in the gas circulator of primary helium purification system, we have established a new replacement plan for every three years.
Deng, Y.*; Watanabe, Yukinobu*; Manabe, Seiya*; Liao, W.*; Hashimoto, Masanori*; Abe, Shinichiro; Tampo, Motonobu*; Miyake, Yasuhiro*
IEEE Transactions on Nuclear Science, 71(4, Part 2), p.912 - 920, 2024/04
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)With the miniaturization of semiconductors and the decrease in operating voltage, there is a growing interest and discussion in whether the muons in cosmic rays may be the source of single event upsets (SEUs). In the case of neutron-induced SEUs, it was reported that the irradiation side has the impact on SEU cross sections. Here, to investigate the impact of irradiation direction on muon-induced SEUs, we have measured and simulate muon-induced SEUs in 65-nm bulk SRAMs with different muon irradiation directions. It was found that the peak SEU cross section for the package side irradiation is about twice large as that for the board side irradiation. We also revealed that the difference in observed SEU cross sections between the package side and the board side irradiation is caused by differences in energy straggling due to changes in penetration depth depending on the incident direction.
Sano, Naruto; Yamashita, Naoki; Watanabe, Masaya; Tsukada, Manabu*; Hoshino, Kazutoyo*; Hirai, Koki; Ikegami, Yuta*; Tashiro, Shinsuke; Yoshida, Ryoichiro; Hatakeyama, Yuichi; et al.
JAEA-Technology 2023-029, 36 Pages, 2024/03
At the Waste Safety Testing Facility (WASTEF), the gamma ray irradiation device "Gamma Cell 220" was relocated from the 4th Research Building of the Nuclear Science Research Institute in FY2019, and the use of gamma ray irradiation has begun. Initially, Fuel Cycle Safety Research Group, Fuel Cycle Safety Research Division, Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness, the owner of this device, conducted the tests as the main user, but since 2022, other users, including those outside the organization, have started using it. The gamma ray irradiation device "Gamma Cell 220" is manufactured by Nordion International Inc. in Canada. Since it was purchased in 1989, the built-in Co radiation source has been updated once, and safety research related to nuclear fuel cycles, etc. It is still used for this purpose to this day. This report summarizes the equipment overview of the gamma ray irradiation device "Gamma Cell 220", its permits and licenses at WASTEF, usage status, maintenance and inspection, and future prospects.
Ryoki, Akiyuki*; Watanabe, Fumi*; Okudaira, Takuya*; Takahashi, Shingo*; Oku, Takayuki; Hiroi, Kosuke; Motokawa, Ryuhei; Nakamura, Yo*
Journal of Chemical Physics, 160(11), p.114907_1 - 114907_9, 2024/03
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
McGrady, J.; Kumagai, Yuta; Watanabe, Masayuki; Kirishima, Akira*; Akiyama, Daisuke*; Kimuro, Shingo; Ishidera, Takamitsu
Journal of Nuclear Science and Technology, 60(12), p.1586 - 1594, 2023/12
Times Cited Count:1 Percentile:41.04(Nuclear Science & Technology)Oikawa, Kenichi; Sato, Hirotaka*; Watanabe, Kenichi*; Su, Y. H.; Shinohara, Takenao; Kai, Tetsuya; Kiyanagi, Yoshiaki*; Hasemi, Hiroyuki
Journal of Physics; Conference Series, 2605, p.012013_1 - 012013_6, 2023/10
Abe, Shinichiro; Hashimoto, Masanori*; Liao, W.*; Kato, Takashi*; Asai, Hiroaki*; Shimbo, Kenichi*; Matsuyama, Hideya*; Sato, Tatsuhiko; Kobayashi, Kazutoshi*; Watanabe, Yukinobu*
IEEE Transactions on Nuclear Science, 70(8, Part 1), p.1652 - 1657, 2023/08
Times Cited Count:2 Percentile:65.72(Engineering, Electrical & Electronic)Single event upsets (SEUs) caused by neutrons is a reliability problem for microelectronic devices in the terrestrial environment. Acceleration tests using white neutron beam provide realistic soft error rates (SERs), but only a few facilities can provide white neutron beam in the world. If single-source irradiation applicable to diverse neutron source can be utilized for the evaluation of the SER in the terrestrial environment, it contributes to solve the shortage of beam time. In this study, we investigated the feasibility of the SER estimation in the terrestrial environment by any one of these measured data with the SEU cross sections obtained by PHITS simulation. It was found that the SERs estimated by our proposed method are within a factor of 2.7 of that estimated by the Weibull function. We also investigated the effect of simplification which reduce the computational cost in simulation to the SER estimation.
Watanabe, Nao; Yamashita, Susumu; Uesawa, Shinichiro; Nishihara, Kenji; Yoshida, Hiroyuki
Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.3522 - 3534, 2023/08
Accelerator-driven system (ADS), the coolant of which is lead-bismuth eutectic (LBE), has been designed by Japan Atomic Energy Agency. Estimating corrosion rate at the wall surface of LBE channel is an important issue in considering safety and the life of the entire structure. The corrosion rate depends on state of oxygen layers forming at the material surface. Therefore, this study aims to develop a method to evaluate the corrosion rate in ADS for the design study by estimation of the oxide layer growth and dissolution (OLGD) rates by means of numerical analysis. The OLGD rates, mass transfer rates of oxygen and iron between the material and LBE and advection-diffusion rates of them in LBE depend on each other. Therefore, in order to estimate OLGD rates, the three numerical analysis models should be coupled. For the advection-diffusion calculation, to use CFD code should be reasonable approach to analyze complex flow in ADS, while for the OLGD and the mass transfer calculation, to use some correlation equations should be reasonable because their scales are much smaller than the advection-diffusion. The present work has developed the analysis method of OLGD rates by using JUPITER code, which is CFD code developed in JAEA. In terms of the correlation equations of OLGD and mass transfer rates, existing models used in a previous study were used with modified.
Nishino, Saki; Okada, Jumpei; Watanabe, Kazuki; Furuuchi, Yuta; Yokota, Satoru; Yada, Yuji; Kusaka, Shota; Morokado, Shiori; Nakamura, Yoshinobu
JAEA-Technology 2023-011, 39 Pages, 2023/06
Tokai Reprocessing Plant (TRP) which shifted to decommissioning phase in 2014 had nuclear fuel materials such as the spent fuel sheared powder, the diluted plutonium solution and the uranium solution in a part of the reprocessing main equipment because TRP intended to resume reprocessing operations when it suspended the operations in 2007. Therefore, we have planned to remove these nuclear materials in sequence as Flush-out before beginning the decommissioning, and conducted removal of the spent fuel sheared powder as the first stage. The spent fuel sheared powder that had accumulated in the cell of the Main Plant (MP) as a result of the spent fuel shearing process was recovered from the cell floor, the shearing machine and the distributor between April 2016 and April 2017 as part of maintenance. Removing the recovered spent fuel sheared powder was conducted between June 2022 and September 2022. In this work, the recovered powder was dissolved in nitric acid at the dissolver in a small amount in order to remove it safely and early, and the dissolved solution was sent to the highly radioactive waste storage tanks without separating uranium and plutonium. Then, the dissolved solution transfer route was rinsed with nitric acid and water. Although about 15 years had passed since previous process operations, the removing work was successfully completed without any equipment failure because of the organization of a system that combines veterans experienced the operation with young workers, careful equipment inspections, and worker education and training. Removing this powder was conducted after revising the decommissioning project and obtaining approval from the Nuclear Regulation Authority owing to operating a part of process equipment.
Watanabe, Kazuki; Kimura, Norimichi*; Okada, Jumpei; Furuuchi, Yuta; Kuwana, Hideharu*; Otani, Takehisa; Yokota, Satoru; Nakamura, Yoshinobu
JAEA-Technology 2023-010, 29 Pages, 2023/06
The Krypton Recovery Development Facility reached an intended technical target (krypton purity of over 90% and recovery rate of over 90%) by separation and rectification of krypton gas from receiving off-gas produced by the shearing and the dissolution process in the spent fuel reprocessing at the Tokai Reprocessing Plant (TRP) between 1988 and 2001. In addition, the feasibility of the technology was confirmed through immobilization test with ion-implantation in a small test vessel from 2000 to 2002, using a part of recovered krypton gas. As there were no intentions to use the remaining radioactive krypton gas in the krypton storage cylinders, we planned to release this gas by controlling the release amount from the main stack, and conducted it from February 14 to April 26, 2022. In this work, all the radioactive krypton gas in the cylinders (about 7.110 GBq) was released at the rate of 50 GBq/min or less lower than the maximum release rate from the main stuck stipulated in safety regulations (3.710 GBq/min). Then, the equipment used in the controlled release of radioactive krypton gas and the main process (all systems, including branch pipes connected to the main process) were cleaned with nitrogen gas. Although there were delays due to weather, we were able to complete the controlled release of radioactive krypton gas by the end of April 2022, as originally targeted without any problems such as equipment failure.
Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei; Nakano, Keita; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.
EPJ Web of Conferences, 284, p.01041_1 - 01041_4, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Intensive fast neutron sources using deuteron accelerators have been proposed for the study of medical RI production, radiation damage for fusion reactor materials, nuclear transmutation of radioactive waste, and so on. Neutron production data from various materials bombarded by deuterons are required for the design of such neutron sources. In the present work, we have conducted a systematic measurement of double-differential neutron production cross sections (DDXs) for a wide atomic number range of targets (Li, Be, C, Al, Cu, Nb, In, Ta, and Au) at an incident energy of 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin target foil. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0 to 25). The neutron energy was determined by a conventional time-of-flight (TOF) method. The measured DDXs were compared with theoretical model calculations by the DEUteron-induced Reaction Analysis Code System (DEURACS) and PHITS. The result indicated that the DEURACS calculation provides better agreement with the measured DDXs than the PHITS calculation.
Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.
ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04
Times Cited Count:5 Percentile:82.80(Chemistry, Multidisciplinary)The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.
Kato, Masato; Nakamichi, Shinya; Hirooka, Shun; Watanabe, Masashi; Murakami, Tatsutoshi; Ishii, Katsunori
Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(2), p.51 - 58, 2023/04
Uranium and Plutonium mixed oxide (MOX) pellets used as fast reactor fuels have been produced from several raw materials by mechanical blending method through processes of ball milling, additive blending, granulation, pressing, sintering and so on. It is essential to control the pellet density which is one of the important fuel specifications, but it is difficult to understand relationships among many parameters in the production. Database for MOX production was prepared from production results in Japan, and input data of eighteen types were chosen from production process and made a data set. Machine learning model to predict sintered density of MOX pellet was derived by gradient boosting regressor, and represented the measured sintered density with coefficient of determination of R=0.996