Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 64

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Spallation and fragmentation cross sections for 168 MeV/nucleon $$^{136}$$Xe ions on proton, deuteron, and carbon targets

Sun, X. H.*; Wang, H.*; Otsu, Hideaki*; Sakurai, Hiroyoshi*; Ahn, D. S.*; Aikawa, Masayuki*; Fukuda, Naoki*; Isobe, Tadaaki*; Kawakami, Shunsuke*; Koyama, Shumpei*; et al.

Physical Review C, 101(6), p.064623_1 - 064623_12, 2020/06

 Times Cited Count:0 Percentile:100(Physics, Nuclear)

The spallation and fragmentation reactions of $$^{136}$$Xe induced by proton, deuteron and carbon at 168 MeV/nucleon were studied at RIKEN Radioactive Isotope Beam Factory via the inverse kinematics technique. The cross sections of the lighter products are larger in the carbon-induced reactions due to the higher total kinetic energy of carbon. The energy dependence was investigated by comparing the newly obtained data with previous results obtained at higher reaction energies. The experimental data were compared with the results of SPACS, EPAX, PHITS and DEURACS calculations. These data serve as benchmarks for the model calculations.

Journal Articles

Intercomparison of numerical atmospheric dispersion prediction models for emergency response to emissions of radionuclides with limited source information in the Fukushima Dai-ichi Nuclear Power Plant accident

Iwasaki, Toshiki*; Sekiyama, Tsuyoshi*; Nakajima, Teruyuki*; Watanabe, Akira*; Suzuki, Yasushi*; Kondo, Hiroaki*; Morino, Yu*; Terada, Hiroaki; Nagai, Haruyasu; Takigawa, Masayuki*; et al.

Atmospheric Environment, 214, p.116830_1 - 116830_11, 2019/10

 Times Cited Count:1 Percentile:73.29(Environmental Sciences)

The utilization of numerical atmospheric dispersion prediction (NDP) models for accidental discharge of radioactive substances was recommended by a working group of the Meteorological Society of Japan. This paper is to validate the recommendation through NDP model intercomparison in the accidental release from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Emission intensity is assumed to be constant during the whole forecast period for the worst-case scenario unless time sequence of emission is available. We expect to utilize forecasts of surface air contaminations for preventions of inhalations of radioactive substances, and column-integrated amounts for mitigation of radiation exposure associated with wet deposition. Although NDP forecasts have ensemble spread, they commonly figure out relative risk in space and time. They are of great benefit to disseminating effective warnings to public without failure. The multi-model ensemble technique may be effective to improve the reliability.

Journal Articles

Exascale simulations of fusion plasmas

Idomura, Yasuhiro; Watanabe, Tomohiko*; Todo, Yasushi*

Shimyureshon, 38(2), p.79 - 86, 2019/06

We promote the research and development of exascale fusion plasma simulations on Post-K towards estimation and prediction of core plasma performance, and exploration of improved operation scenarios on the next generation fusion experimental reactor ITER. In this paper, we review developed exascale simulation technologies and outcomes from validation studies on existing experimental devices, and discuss perspectives on exascale fusion plasma simulations on Post-K.

Journal Articles

Nitrogen hot trap design and manufactures for lithium test loop in IFMIF/EVEDA project

Wakai, Eiichi; Watanabe, Kazuyoshi*; Ito, Yuzuru*; Suzuki, Akihiro*; Terai, Takayuki*; Yagi, Juro*; Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; et al.

Plasma and Fusion Research (Internet), 11, p.2405112_1 - 2405112_4, 2016/11


Journal Articles

Evaluation of dark current profile for prediction of voltage holding capability on multi-aperture multi-grid accelerator for ITER

Nishikiori, Ryo; Kojima, Atsushi; Hanada, Masaya; Kashiwagi, Mieko; Watanabe, Kazuhiro; Umeda, Naotaka; Tobari, Hiroyuki; Yoshida, Masafumi; Ichikawa, Masahiro; Hiratsuka, Junichi; et al.

Plasma and Fusion Research (Internet), 11, p.2401014_1 - 2401014_4, 2016/03

One of critical issues for high-energy high-current beam acceleration in ITER and JT-60SA is the high voltage holding which is dominated by vacuum discharges. The past results suggest that vacuum discharge occurs beyond the threshold of the dark current. The dark current can be derived from F-N theory where electric field enhancement factor beta is included. Though, beta could only be evaluated from the experiment previously. Therefore, the method to decide beta without experiment is required. This time dark currents were measured at three different areas to compare beta in different electric field. As a result, the effective electric field $$beta$$E, where E is average electric field, were found to be almost constant for different areas although the beta is largely different. By applying $$beta$$E, beta can be evaluated analytically, leading to the analytical prediction of the dark current and voltage holding capability without the measurements.

Journal Articles

Progress report of Japanese simulation research projects using the high-performance computer system Helios in the International Fusion Energy Research Centre

Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03

The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.

Journal Articles

Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

Kojima, Atsushi; Hanada, Masaya; Tobari, Hiroyuki; Nishikiori, Ryo; Hiratsuka, Junichi; Kashiwagi, Mieko; Umeda, Naotaka; Yoshida, Masafumi; Ichikawa, Masahiro; Watanabe, Kazuhiro; et al.

Review of Scientific Instruments, 87(2), p.02B304_1 - 02B304_5, 2016/02

 Times Cited Count:5 Percentile:59.13(Instruments & Instrumentation)

Optimization techniques of the vacuum insulation design have been developed in order to realize a reliable voltage holding capability of Multi-Aperture Multi-Grid accelerators for giant negative ion sources for nuclear fusion. In this method, the nested multilayer configuration of each acceleration stage in the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages were based on the past experimental results of the area effect and the multi-aperture effect on the voltage holding capability. Moreover, total voltage holding capability of multi-stage was estimated by taking the multi-stage effect into account, which was experimentally obtained in this time. In this experiment, the multi-stage effect appeared as the superposition of breakdown probabilities in each acceleration stage, which suggested that multi-stage effect can be considered as the voltage holding capability of the single acceleration gap having the total area and aperture. The analysis on the MAMuG accelerator for JT-60SA agreed with the past gap-scan experiments with an accuracy of less than 10% variation.

Journal Articles

Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

Hanada, Masaya; Kojima, Atsushi; Tobari, Hiroyuki; Nishikiori, Ryo; Hiratsuka, Junichi; Kashiwagi, Mieko; Umeda, Naotaka; Yoshida, Masafumi; Ichikawa, Masahiro; Watanabe, Kazuhiro; et al.

Review of Scientific Instruments, 87(2), p.02B322_1 - 02B322_4, 2016/02

 Times Cited Count:9 Percentile:39.01(Instruments & Instrumentation)

In International Thermo-nuclear Experimental Reactor (ITER) and JT-60 Super Advanced (JT-60 SA), the D$$^{-}$$ ion beams of 1 MeV, 40 A and 0.5 MeV, 22 A are required to produce 3600 s and 100 s for the neutral beam injection, respectively. In order to realize such as powerful D$$^{-}$$ ion beams for long duration time, Japan Atomic Energy Agency (JAEA) has energetically developed cesium (Cs)-seeded negative ion sources (CsNIS) and electro-static multi-aperture and multi-stage accelerators (MAMuG accelerator) which are chosen as the reference design of ITER and JT-60 SA. In the development of the CsNIS, a 100s production of the H$$^{-}$$ ion beam has been demonstrated with a beam current of 15 A by modifying the JT-60 negative ion source. At the higher current, the long pulse production of the negative ions has been tried by the mitigation of the arcing in the plasma inside the ion source. As for the long pulse acceleration of the negative ions in the MAMuG accelerator, the beam steering angle has been controlled to reduce the power loading of the acceleration grids A pulse duration time has been significantly extended from 0.4 s to 60 s at reasonable beam power for ITER requirement. The achieved pulse duration time is limited by the capacity of the power supplies in the test stand. In the range of $$<$$ 60 s, there are no degradations of beam optics and voltage holding capability in the accelerator. It leads to the further extension of the pulse duration time at higher power density. This paper reports the latest results of development on the negative ion source and accelerator at JAEA.

Journal Articles

Nucleoside diphosphate kinase from psychrophilic ${it Pseudoalteromonas}$ sp. AS-131 isolated from Antarctic Ocean

Yonezawa, Yasushi*; Nagayama, Aiko*; Tokunaga, Hiroko*; Ishibashi, Matsujiro*; Arai, Shigeki; Kuroki, Ryota; Watanabe, Keiichi*; Arakawa, Tsutomu*; Tokunaga, Masao*

Protein Journal, 34(4), p.275 - 283, 2015/08

 Times Cited Count:2 Percentile:91.75(Biochemistry & Molecular Biology)

Nucleoside diphosphate kinase isolated from psychrophilic ${it Pseudoalteromonas}$ sp. AS-131 (ASNDK) was expressed in ${it Escherichia coli}$ and purified to homogeneity. Comparing to mesophilic NDK isolated from ${it Pseudomonas aeruginosa}$, ASNDK exhibited highly elevated thermolability: (1) ${it E. coli}$ expression at 37$$^{circ}$$C as a denatured insoluble form, and (2) 30$$^{circ}$$C lower optimum temperature of enzymatic activity. The subunit structure of ASNDK was suggested to be dimer, as in NDKs isolated from moderate halophiles.

Journal Articles

Development of a widely usable amino acid tracer; $$^{76}$$Br-$$alpha$$-methyl-phenylalanine for tumor PET imaging

Hanaoka, Hirofumi*; Ohshima, Yasuhiro; Suzuki, Yurika*; Yamaguchi, Aiko*; Watanabe, Shigeki; Uehara, Tomoya*; Nagamori, Shushi*; Kanai, Yoshikatsu*; Ishioka, Noriko; Tsushima, Yoshito*; et al.

Journal of Nuclear Medicine, 56(5), p.791 - 797, 2015/05

 Times Cited Count:12 Percentile:35.54(Radiology, Nuclear Medicine & Medical Imaging)

Journal Articles

Engineering validation and engineering design of lithium target facility in IFMIF/EVEDA project

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; Ida, Mizuho*; Ito, Yuzuru; Niitsuma, Shigeto; Edao, Yuki; et al.

Fusion Science and Technology, 66(1), p.46 - 56, 2014/07

 Times Cited Count:4 Percentile:59.06(Nuclear Science & Technology)

Journal Articles

AESJ-KNS exchange work of students and young researchers; Subcommittee on students and young researchers exchange program

Ishibashi, Kenji*; Uesaka, Mitsuru*; Morita, Koji*; Sato, Yasushi*; Iimoto, Takeshi*; Watanabe, Yukinobu*; Unesaki, Hironobu*; Yamano, Hidemasa

Nippon Genshiryoku Gakkai-Shi, 55(7), p.403 - 406, 2013/07

Japan-Korea Exchange program has been successful and their joint sessions have been accompanying conferences. With this background, younger generation's communication has been recognized as important role in Japan and Korea's joint cooperation. Thus students and young researchers support program has started. Understanding the achievements and the current status is important, expecting unrelated areas and working groups to show interest and hopefully join this area of work.

Journal Articles

High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

Odaka, Hirokazu*; Ichinohe, Yuto*; Takeda, Shinichiro*; Fukuyama, Taro*; Hagino, Koichi*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; Watanabe, Shin*; Kokubun, Motohide*; et al.

Nuclear Instruments and Methods in Physics Research A, 695, p.179 - 183, 2012/12

 Times Cited Count:19 Percentile:13.6(Instruments & Instrumentation)

We have developed a new Si/CdTe semiconductor double-sided strip detector (DSD) Compton camera. The camera consists of a 500-$$mu$$m-thick Si-DSD and four layers of 750-$$mu$$m-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250$$mu$$m. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5 degrees at 356 keV and 3.5 degrees at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

Journal Articles

Development of lithium target system in engineering validation and engineering design activity of the International Fusion Materials Irradiation Facility (IFMIF/EVEDA)

Wakai, Eiichi; Kondo, Hiroo; Sugimoto, Masayoshi; Fukada, Satoshi*; Yagi, Juro*; Ida, Mizuho; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Watanabe, Kazuyoshi; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 88(12), p.691 - 705, 2012/12

no abstracts in English

Journal Articles

Applications and imaging techniques of a Si/CdTe Compton $$gamma$$-ray camera

Takeda, Shinichiro*; Ichinohe, Yuto*; Hagino, Koichi*; Odaka, Hirokazu*; Yuasa, Takayuki*; Ishikawa, Shinnosuke*; Fukuyama, Taro*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; et al.

Physics Procedia, 37, p.859 - 866, 2012/10

 Times Cited Count:11 Percentile:3.24

By using new Compton camera consisting of silicon double-sided strip detector (Si-DSD) and CdTe-DSD developed for the ASTRO-H mission, an experiment was conducted to study its feasibility for advanced hotspot monitoring. In addition to hotspot imaging already provided by commercial imaging systems, the identification of the variety of radioisotopes is realized thanks to the good energy resolution given by the semiconductor detectors. Three radioisotopes of $$^{133}$$Ba (356 keV), $$^{22}$$Na (511 keV) and $$^{137}$$Cs (662 keV) were individually imaged by applying event selection in the energy window and the $$gamma$$-ray images was correctly overlapped by an optical picture. The detection efficiency of 1.68$$times$$10$$^{-4}$$ (effective area: 1.7$$times$$10$$^{-4}$$ cm$$^2$$) and angular resolution of 3.8$$^{circ}$$ were obtained by stacking five detector modules for 662 keV $$gamma$$-ray. The higher detection efficiency required in a specific use can be achieved by stacking more detector modules.

Journal Articles

Completion of IFMIF/EVEDA lithium test loop construction

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Fusion Engineering and Design, 87(5-6), p.418 - 422, 2012/08

 Times Cited Count:21 Percentile:11.34(Nuclear Science & Technology)

The EVEDA Li test loop (ELTL) successfully completed its construction and installation of a total of 2.5-ton Li in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the Oarai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010 after passing an authority inspection by a fire department in Oarai town. Subsequently, the 2.5-ton Li was installed to the ELTL by using a glove box. The nitrogen concentration in the 2.5-ton Li was found to be 127 wppm.

Journal Articles

Vacuum insulation of the high energy negative ion source for fusion application

Kojima, Atsushi; Hanada, Masaya; Hilmi, A.*; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Umeda, Naotaka; Tobari, Hiroyuki; Kobayashi, Shinichi*; et al.

Review of Scientific Instruments, 83(2), p.02B117_1 - 02B117_5, 2012/02

 Times Cited Count:14 Percentile:37.54(Instruments & Instrumentation)

Production of 500 keV, 3 A beams has been successfully achieved in the JT-60 negative by overcoming the low voltage holding of the accelerator. Toward the design of next ion source, database for the voltage holding capability based on experimental results is required and obtained. As a result, the voltage holding capability was found to vary with 67 N power of -0.15 and with 31.7 S power of -0.125 where N is the aperture number and S is the anode surface area. When N = 1100 and S = 2 m$$^{2}$$ are applied to the design of JT-60SA ion source, the factors C are estimated to be 23 and 29, respectively. Therefore, the influence of the local electric field around the apertures is stronger than that of the surface area.

Journal Articles

IFMIF/EVEDA lithium test loop; Design and fabrication technology of target assembly as a key component

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Kazuyuki; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Wakai, Eiichi; Horiike, Hiroshi*; Yamaoka, Nobuo*; et al.

Nuclear Fusion, 51(12), p.123008_1 - 123008_12, 2011/12

 Times Cited Count:35 Percentile:13.68(Physics, Fluids & Plasmas)

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

Journal Articles

Completion of IFMIF/EVEDA Li test loop construction and commissioning

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of Plasma Conference 2011 (PLASMA 2011) (CD-ROM), 2 Pages, 2011/11

The EVEDA Li test loop (ELTL) successfully completed its construction and commissioning in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the O-arai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010. In the commissioning conducted subsequently, the following tests were performed: (1) Li ingots installation into the ELTL, (2) Li charging and draining operation, (3) Li circulation tests. In a final phase of the circulation test, stable liquid Li flow at a velocity of 5 m/s was successfully achieved.

Journal Articles

Present status of Japanese tasks for lithium target facility under IFMIF/EVEDA

Nakamura, Kazuyuki; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Kondo, Hiroo; Ida, Mizuho; Niitsuma, Shigeto; Otaka, Masahiko; Watanabe, Kazuyoshi; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 86(9-11), p.2491 - 2494, 2011/10

 Times Cited Count:9 Percentile:34.74(Nuclear Science & Technology)

In IFMIF/EVEDA, tasks for lithium target system are shared to 5 validation tasks (LF1-5) and a design task (LF6). The purpose of LF1 task is to construct and operate the EVEDA lithium test loop, and JAEA has a main responsibility to the performance of the Li test loop. LF2 is a task for the diagnostics of the Li test loop and IFMIF design. Basic research for the diagnostics equipment has been completed, and the construction for the Li test loop will be finished before March in 2011. LF4 is a task for the purification systems with nitrogen and hydrogen. Basic research for the purification equipment has been completed, and the construction of the nitrogen system for the Li test loop will be finished before March in 2011. LF5 is a task for the remote handling system with the target assembly. JAEA has an idea to use the laser beam for cutting and welding of the lip part of the flanges. LF6 is a task for the design of the IFMIF based on the validation experiments of LF1-5.

64 (Records 1-20 displayed on this page)