Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Test results of ITER conductors in the SULTAN facility

Bruzzone, P.*; Stepanov, B.*; Wesche, R.*; Mitchell, N.*; Devred, A.*; Nunoya, Yoshihiko; Tronza, V.*; Kim, K.*; Boutboul, T.*; Martovetsky, N.*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

Starting March 2007, over 60 ITER cable-in-conduit conductors (CICC) have been tested in the SULTAN test facility, Switzerland. For the NbTi CICC, the results confirm the prediction from the strand data, which are made taking the peak field over the conductor cross section as operating field. All the NbTi samples passed the supplier qualification phase. For the Nb$$_{3}$$Sn CICC, the performance prediction is not straightforward because of the irreversible degradation caused by filament damage occurring during cyclic loading. At the first run of the test campaign, the performance of all the Nb$$_{3}$$Sn samples largely meets the target for all the tested samples. Contrary to the NbTi CICC case, the n-index of the transition is substantially lower than in the strands, providing evidence of irreversible degradation. The performance loss upon load cycles and thermal cycles has a broad range among the various conductor samples.

Journal Articles

Predictive analysis of the ITER poloidal field conductor insert (PFCI) test program

Zanino, R.*; Astrov, M.*; Bagnasco, M.*; Baker, W.*; Bellina, F.*; Ciazynski, D.*; Egorov, S. A.*; Kim, K.*; Kvitkovic, J. L.*; Lacroix, B.*; et al.

IEEE Transactions on Applied Superconductivity, 17(2), p.1353 - 1357, 2007/06

 Times Cited Count:4 Percentile:29.39(Engineering, Electrical & Electronic)

The PFCI will be tested at JAEA Naka, inside the bore of the ITER Central Solenoid Model Coil. The main test program are the DC characterization of the conductor, the measurement of AC losses in conductor, the hydraulic characterization, the stability and the quench propagation, and the effects of cycling electromagnetic load. Based on and in support of this test program, an extensive campaign of predictive analysis has been initiated on a subset of the above-mentioned test program items and the results of the comparison of selected predictions from different laboratories will be presented and discussed. A sudden quench at 5.7-6.2 K and 45 kA is predicted. The computed temperature increase at the winding outlet is about 0.5 K for the pulse. These results will be compared with the experiment and used for an accurate prediction of the PF coil performance.

2 (Records 1-2 displayed on this page)
  • 1