Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress in the ITER physics basis, 1; Overview and summary

Shimada, Michiya; Campbell, D. J.*; Mukhovatov, V.*; Fujiwara, Masami*; Kirneva, N.*; Lackner, K.*; Nagami, Masayuki; Pustovitov, V. D.*; Uckan, N.*; Wesley, J.*; et al.

Nuclear Fusion, 47(6), p.S1 - S17, 2007/06

 Times Cited Count:744 Percentile:99.93(Physics, Fluids & Plasmas)

The Progress in the ITER Physics Basis document is an update of the ITER Physics Basis (IPB), which was published in 1999. The IPB provided methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modeling and theoretical activities carried out on today's tokamaks (ITER Physics R&D). In the IPB, projections for ITER (1998 Design) were also presented. The IPB also pointed out some outstanding issues. These issues have been addressed by the International Tokamak Physics Activities (ITPA), which were initiated by the European Union, Japan, Russia and the U.S.A.. The new methodologies of projection and control developed through the ITPA are applied to ITER, which was redesigned under revised technical objectives, but will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy.

Journal Articles

Progress in the ITER physics basis, 3; MHD stability, operational limits and disruptions

Hender, T. C.*; Wesley, J. C.*; Bialek, J.*; Bondeson, A.*; Boozer, A. H.*; Buttery, R. J.*; Garofalo, A.*; Goodman, T. P.*; Granetz, R. S.*; Gribov, Y.*; et al.

Nuclear Fusion, 47(6), p.S128 - S202, 2007/06

 Times Cited Count:916 Percentile:100(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Progress in the ITER physics basis, 8; Plasma operation and control

Gribov, Y.*; Humphreys, D. A.*; Kajiwara, Ken*; Lazarus, E. A.*; Lister, J. B.*; Ozeki, Takahisa; Portone, A.*; Shimada, Michiya*; Sips, A. C. C.*; Wesley, J. C.*

Nuclear Fusion, 47(6), p.S385 - S403, 2007/06

 Times Cited Count:133 Percentile:97.45(Physics, Fluids & Plasmas)

This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This chapter considers only plasma initiation and plasma basic control. The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, ITER can produce plasma initiation in a low toroidal electric field of 0.3V/m, if it is assisted by about 2MW of ECRF heating. The plasma basic control is described, which includes control of the plasma current, position and shape - the plasma magnetic control, as well as control of other plasma global parameters or their profiles - the plasma performance control.

3 (Records 1-3 displayed on this page)
  • 1