検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 7 件中 1件目~7件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Multiple deformation scheme in direct energy deposited CoCrNi medium entropy alloy at 210K

Kim, Y. S.*; Chae, H.*; Woo, W.*; Kim, D.-K.*; Lee, D.-H.*; Harjo, S.; 川崎 卓郎; Lee, S. Y.*

Materials Science & Engineering A, 828, p.142059_1 - 142059_10, 2021/11

CoCrNi medium entropy alloy (MEA) and stainless steel 316L (SS316L) were manufactured by direct energy deposition of additive manufacturing (DED-AM). Exceptional mechanical properties of DED CoCrNi at 210K were achieved by the activities of a multiple deformation scheme that changed from dislocation slip to twinning-induced plasticity followed by transformation-induced plasticity. While SS316L at room temperature has micro-twins, CoCrNi at 210K exhibited nano-twins, resulting from lower stacking fault energy. Moreover, transformed hexagonal close-packed (HCP) phases were found near the face-centered cubic (FCC) {111} grain boundaries, where remarkable stacking faults and severe lattice distortion were measured.

論文

Effect of the difference in strength of hard and soft components on the synergetic strengthening of layered materials

Kim, J. G.*; Bae, J. W.*; Park, J. M.*; Woo, W.*; Harjo, S.; Lee, S.*; Kim, H. S.*

Metals and Materials International, 27(2), p.376 - 383, 2021/02

 被引用回数:2 パーセンタイル:45.37(Materials Science, Multidisciplinary)

Heterogeneous structured materials achieve a combination of high strength and extreme ductility due to synergetic strengthening driven by conditions in the interfacial region. Although the origin of synergetic strengthening has been revealed to be strain incompatibility in the interfacial region, the effect of the strength difference between hard and soft phases on strengthening has not been investigated well. In the work reported in the present paper, the effect of the difference in strength of the hard and soft phases on synergetic strengthening was investigated by conducting in situ neutron diffraction tensile tests. As a result, it was determined that the dislocation density in a layered sheet of high Mn (HMn) steel/interstitial free (IF) steel is higher than that in a layered sheet of HMn/low carbon steel. The big difference in mechanical properties between HMn steel and IF steel induces a high stress gradient and results in additional dislocations.

論文

Comparison of dislocation density, twin fault probability, and stacking fault energy between CrCoNi and CrCoNiFe medium entropy alloys deformed at 293 and 140K

Woo, W.*; Naeem, M.*; Jeong, J.-S.*; Lee, C.-M.*; Harjo, S.; 川崎 卓郎; He, H.*; Wang, X.-L.*

Materials Science & Engineering A, 781, p.139224_1 - 139224_7, 2020/04

 被引用回数:6 パーセンタイル:76.25(Nanoscience & Nanotechnology)

To elucidate deformation behavior behind the exceptional mechanical properties of CrCoNi based medium entropy alloys, the deformation related microstructural parameters were determined by using in situ neutron diffraction and peaks profile analysis methods. Superior tensile strength and elongation of the CrCoNi alloy is relevant to higher twin fault probability ($$P_{tw}$$, up to 3.8%) and dislocation density ($$rho$$, up to 9.7 $$times$$ 10$$^{15}$$ m$$^{-2}$$) compared to those (1.3% and 3.4 $$times$$ 10$$^{15}$$ m$$^{-2}$$, respectively) of the CrCoNiFe at 293K. Meanwhile, at 140K, the $$P_{tw}$$ of the CrCoNiFe significantly increased up to 4.4% with the stable $$rho$$ of $$sim$$5.0 $$times$$ 10$$^{15}$$ m$$^{-2}$$ and its mechanical properties overwhelm those of the CrCoNi at 273K. Such twinning dominant deformation mechanism at low temperature is also assured by lower stacking fault energy (SFE) of the CrCoNiFe at 140K compared to those of the CrCoNi and CrCoNiFe alloys at 293K.

論文

On the phase transformation and dynamic stress-strain partitioning of ferrous medium-entropy alloy using experimentation and finite element method

Bae, J. W.*; Jung, J.*; Kim, J. G.*; Park, J. M.*; Harjo, S.; 川崎 卓郎; Woo, W.*; Kim, H. S.*

Materialia, 9, p.100619_1 - 100619_15, 2020/03

In the present study, an integrated experimental-numerical analysis on ferrous medium-entropy alloy (FMEA) was conducted to understand the micromechanical response of the constituent phases in the FMEA at -137$$^{circ}$$C. The initial face-centered cubic (FCC) single phase microstructure of the FMEA was transformed to body-centered cubic (BCC) martensite during tensile deformation at -137$$^{circ}$$C, resulting in improved low-temperature mechanical properties. The microstructure evolution due to deformation-induced phase transformation mechanism and strain partitioning behavior was analyzed using ${it ex situ}$ electron backscatter diffraction. The mechanical responses related to the stress partitioning between constituent phases and deformation-induced transformation rate were measured using ${it in situ}$ neutron diffraction in combination with the nanoindentation analysis.

論文

Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction

Woo, W.*; Jeong, J.-S.*; Kim, D.-K.*; Lee, C. M.*; Choi, S.-H.*; Suh, J.-Y.*; Lee, S. Y.*; Harjo, S.; 川崎 卓郎

Scientific Reports (Internet), 10(1), p.1350_1 - 1350_15, 2020/01

 被引用回数:10 パーセンタイル:82.97(Multidisciplinary Sciences)

Stacking fault energies (SFE) were determined in additively manufactured (AM) stainless steel (SS 316 L) and equiatomic CrCoNi medium-entropy alloys. In situ neutron diffraction was performed to obtain a number of faulting-embedded diffraction peaks simultaneously from a set of (hkl) grains during deformation. The peak profiles diffracted from imperfect crystal structures were analyzed to correlate stacking fault probabilities and mean-square lattice strains to the SFE. The result shows that averaged SFEs are 32.8 mJ/m$$^2$$ for the AM SS 316 L and 15.1 mJ/m$$^2$$ for the AM CrCoNi alloys. Meanwhile, during deformation, the SFE varies from 46 to 21 mJ/m$$^2$$ (AM SS 316 L) and 24 to 11 mJ/m$$^2$$ (AM CrCoNi) from initial to stabilized stages, respectively. The transient SFEs are attributed to the deformation activity changes from dislocation slip to twinning as straining.

論文

Plastic anisotropy and deformation-induced phase transformation of additive manufactured stainless steel

Chae, H.*; Huang, E.-W.*; Jain, J.*; Wang, H.*; Woo, W.*; Chen, S.-W.*; Harjo, S.; 川崎 卓郎; Lee, S. Y.*

Materials Science & Engineering A, 762, p.138065_1 - 138065_10, 2019/08

 被引用回数:21 パーセンタイル:92.74(Nanoscience & Nanotechnology)

Plastic anisotropy and deformation-induced phase transformation of additively manufactured (AM) stainless steels were investigated via in-situ neutron diffraction, electron backscatter diffraction, metallography, and fractography. Two types of tensile specimens were manufactured: (1) One sample was vertically fabricated with its tensile axis parallel to the z-direction (AM-V), (2) The other sample was horizontally fabricated with its tensile axis perpendicular to the z-direction (AM-H). A commercial 15-5PH stainless steel (CA) was used for comparison. AM steel revealed enhanced yield strength, tensile strength, and uniform elongation over CA, which was mainly due to grain refinement and transformation induced plasticity (TRIP). Different onsets of strain nonlinearity between AM-V and AM-H were closely related to martensitic phase transformation.

論文

Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO$$_{3}$$

Oh, J.*; Le, M. D.*; Nahm, H.-H.*; Sim, H.*; Jeong, J.*; Perring, T. G.*; Woo, H.*; 中島 健次; 河村 聖子; Yamani, Z.*; et al.

Nature Communications (Internet), 7, p.13146_1 - 13146_6, 2016/10

 被引用回数:38 パーセンタイル:85.96(Multidisciplinary Sciences)

(Y,Lu)MnO$$_{3}$$において、磁気励起とフォノンが結合する磁気弾性励起を中性子散乱により観測し、その量子的振る舞いを調べた。

7 件中 1件目~7件目を表示
  • 1