Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Murmiliuk, A.*; Iwase, Hiroki*; Kang, J.-J.*; Mohanakumar, S.*; Appavou, M.-S.*; Wood, K.*; Almsy, L.*; Len, A.*; Schwrzer, K.*; Allgaier, J.*; et al.
Journal of Colloid and Interface Science, 665, p.801 - 813, 2024/07
Times Cited Count:3 Percentile:84.48(Chemistry, Physical)The complexity of protein structure limits our ability to predict and tune the properties of the formed nanoparticles. The goal of our research is to elucidate the key triggers of the morphological transition in protein/PE complexes, evaluate their encapsulation efficacy, and assess particle stability by the systematic study of complexes formed by block copolymers with proteins and ionic drugs. We demonstrated that copolymers consisting of PE and neutral hydrophilic block co-assemble with insulin at pH values close to the protein isoelectric point. The insulin arrangement within the particle is controlled by electrostatic forces between protein molecules, and the morphology of the formed particles can be tuned by varying pH and ionic strength.
Venhart, M.*; Andreyev, A. N.; Cubiss, J. G.*; Wood, J. L.*; Barzakh, A. E.*; Van Beveren, C.*; Cocolios, T. E.*; de Groote, R. P.*; 19 of others*
Physical Review C, 105(3), p.034338_1 - 034338_9, 2022/03
Times Cited Count:2 Percentile:37.57(Physics, Nuclear)Venhart, M.*; Balogh, M.*; Herz, A.*; Wood, J. L.*; Ali, F. A.*; Joss, D. T.*; Andreyev, A. N.; Auranen, K.*; Carroll, R. J.*; Drummond, M. C.*; et al.
Physics Letters B, 806, p.135488_1 - 135488_6, 2020/07
Times Cited Count:6 Percentile:53.35(Astronomy & Astrophysics)Trkov, A.*; Griffin, P. J.*; Simakov, S. P.*; Greenwood, L. R.*; Zolotarev, K. I.*; Capote, R.*; Aldama, D. L.*; Chechev, V.*; Destouches, C.*; Kahler, A. C.*; et al.
Nuclear Data Sheets, 163, p.1 - 108, 2020/01
Times Cited Count:117 Percentile:99.75(Physics, Nuclear)The version II of the International Reactor Dosimetry and Fusion File (IRDFF-II) has been released as a consistent set of nuclear data for fission and fusion neutron metrology applications up to 60 MeV neutron energy. The library is intended to support: (a) applications in research reactors; (b) safety and regulatory applications in the nuclear power generation in commercial fission reactors; and c) material damage studies in support of the research and development of advanced fusion concepts. The paper describes the contents of the library, documents the thorough verification process used in its preparation, and provides an extensive set of validation data gathered from a wide range of neutron benchmark fields. The new library is expected to become the international reference in neutron metrology for multiple applications.
Wrzosek-Lipska, K.*; Rezynkina, K.*; Bree, N.*; Zieliska, M.*; Gaffney, L. P.*; Petts, A.*; Andreyev, A. N.; Bastin, B.*; Bender, M.*; Blazhev, A.*; et al.
European Physical Journal A, 55(8), p.130_1 - 130_23, 2019/08
Times Cited Count:16 Percentile:81.22(Physics, Nuclear)Sublet, J.-Ch.*; Bondarenko, I. P.*; Bonny, G.*; Conlin, J. L.*; Gilbert, M. R.*; Greenwood, L. R.*; Griffin, P. J.*; Helgesson, P.*; Iwamoto, Yosuke; Khryachkov, V. A.*; et al.
European Physical Journal Plus (Internet), 134(7), p.350_1 - 350_50, 2019/07
Times Cited Count:20 Percentile:52.63(Physics, Multidisciplinary)Nuclear reaction with nuclear data is the origin of defects produced by cascade damage in irradiated materials. Therefore, it is important to consider nuclear reaction correctly for calculations of the damage energy of Primary Knock on Atom (PKA) and the number of Displacement Per Atom (DPA). Here, radiation damage metrics considering nuclear reaction enables us to simulate transport of each defect and clustering defects in the irradiated material. This paper reviews the theory of nuclear reaction and damage energy and describes the latest methodologies about uncertainty propagation and quantification in nuclear data and damage calculations based on molecular dynamics.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:10 Percentile:52.22(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to collisions.