Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Pressure-modulated magnetism and negative thermal expansion in the Ho$$_2$$Fe$$_{17}$$ intermetallic compound

Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.

Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04

 Times Cited Count:1 Percentile:0(Chemistry, Physical)

Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho$$_2$$Fe$$_{17}$$ on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.

Journal Articles

Half-integer Shapiro steps in strong ferromagnetic Josephson junctions

Yao, Y.*; Cai, R.*; Yang, S.-H.*; Xing, W.*; Ma, Y.*; Mori, Michiyasu; Ji, Y.*; Maekawa, Sadamichi; Xie, X.-C.*; Han, W.*

Physical Review B, 104(10), p.104414_1 - 104414_6, 2021/09

 Times Cited Count:2 Percentile:7.92(Materials Science, Multidisciplinary)

Journal Articles

Nagasaki sediments reveal that long-term fate of plutonium is controlled by select organic matter moieties

Lin, P.*; Xu, C.*; Kaplan, D. I.*; Chen, H.*; Yeager, C. M.*; Xing, W.*; Sun, L.*; Schwehr, K. A.*; Yamazaki, Hideo*; Kokubu, Yoko; et al.

Science of the Total Environment, 678, p.409 - 418, 2019/08

 Times Cited Count:13 Percentile:49.32(Environmental Sciences)

Nagasaki sediments containing bomb-derived Pu provided a unique opportunity to explore the long term geochemical behavior of Pu. Through a combination of selective extractions and molecular characterization via electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry, we determined that 55 $$pm$$ 3% of the $$^{239,240}$$Pu was preferentially associated with more persistent organic matter compounds in Nagasaki sediments, particularly those natural organic matter (NOM) stabilized by Fe oxides. Other organic matter compounds served as a secondary sink of these $$^{239,240}$$Pu (31 $$pm$$ 2% on average), and less than 20% of the $$^{239,240}$$Pu was immobilized by inorganic mineral particles. While present long-term disposal and environmental remediation modeling assume that solubility limits and sorption to mineral surfaces control Pu subsurface mobility, our observations suggest that NOM undoubtedly plays an important role in sequestering Pu. Ignoring the role of NOM in controlling Pu fate and transport is not justified in most environmental systems.

Journal Articles

Band properties of the transitional nucleus $$^{187}$$Pt

Zhou, X. H.*; Xing, Y. B.*; Liu, M. L.*; Zhang, Y. H.*; Guo, Y. X.*; Ma, L.*; Lei, X. G.*; Guo, W. T.*; Oshima, Masumi; Toh, Yosuke; et al.

Physical Review C, 75(3), p.034314_1 - 034314_17, 2007/03

 Times Cited Count:18 Percentile:73.87(Physics, Nuclear)

High-spin states in $$^{187}$$Pt has been studied experimentally by in-beam $$gamma$$-ray spectroscopy. The previously known bands based on the $$nu i_{13/2}, nu 7/2^{-}[503] $$ and $$nu i^{2}_{13/2} nu j$$ configurations have been extended to high-spin states, and new rotational bands associated with the $$nu 3/2^{-}[512]$$ and $$nu 1/2^{-}[521]$$ Nilsson orbits have been identified. The total Routhian surface calculations indicate that the transitional nucleus $$^{187}$$Pt is very soft with respect to $$beta$$ and $$gamma$$ deformations. The band properties have been compared with the systematics observed in neiboring nuclei and have been interpreted within the framework of the cranked shell model.

4 (Records 1-4 displayed on this page)
  • 1