Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Lin, Z. M.*; Liu, B. X.*; Ming, K. S.*; Xu, P. G.; Yin, F. X.*; Zheng, S. J.*
Scripta Materialia, 263, p.116692_1 - 116692_7, 2025/07
Times Cited Count:0Song, Y.*; Xu, S.*; Sato, Shunsuke*; Lee, I.*; Xu, X.*; Omori, Toshihiro*; Nagasako, Makoto*; Kawasaki, Takuro; Kiyanagi, Ryoji; Harjo, S.; et al.
Nature, 638, p.965 - 971, 2025/02
Times Cited Count:2 Percentile:92.88(Multidisciplinary Sciences)Xu, J.*; Lang, P.*; Liang, S.*; Zhang, J.*; Fei, Y.*; Wang, Y.*; Gao, D.*; Hattori, Takanori; Abe, Jun*; Dong, X.*; et al.
Journal of Physical Chemistry Letters (Internet), p.2445 - 2451, 2025/00
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)The Alder-ene reaction is a chemical reaction between an alkene with an allylic hydrogen, and it provides an efficient method to construct the C-C bond. Traditionally, this reaction requires catalysts, high temperatures, or photocatalysis. In this study, we reported a high-pressure-induced solid-state Alder-ene reaction of 1-hexene at room temperature without a catalyst. 1-Hexene crystallizes at 4.3 GPa and polymerizes at 18 GPa, forming olefins. By exploring gas chromatography-mass spectrometry, we discovered that 1-hexene generates dimeric products through the Alder-ene reaction under high pressures. The in situ neutron diffraction shows that the reaction process did not obey the topochemical rule. A six-membered ring transition state including one C-H bond and two alkene
bonds was evidenced by the theoretical calculation, whose energy obviously decreased when compressed to 20 GPa. Our work offers a novel and promising method to realize the Alder-ene reaction at room temperature without a catalyst, expanding the application of this important reaction.
Ito, Tatsuya; Xu, S.*; Xu, X.*; Omori, Toshihiro*; Kainuma, Ryosuke*
Shape Memory and Superelasticity, 9 Pages, 2025/00
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
Times Cited Count:8 Percentile:92.79(Multidisciplinary Sciences)Zheng, X.-G.*; Yamauchi, Ichihiro*; Hagihara, Masato; Nishibori, Eiji*; Kawae, Tatsuya*; Watanabe, Isao*; Uchiyama, Tomoki*; Chen, Y.*; Xu, C.-N.*
Nature Communications (Internet), 15, p.9989_1 - 9989_12, 2024/11
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Chen, H. F.*; Liu, B. X.*; Xu, P. G.; Fang, W.*; Tong, H. C.*; Yin, F. X.*
Journal of Materials Research and Technology, 32, p.3060 - 3069, 2024/09
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.
Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07
Times Cited Count:3 Percentile:78.83(Materials Science, Multidisciplinary)Ji, T.*; Su, S.*; Wu, S.*; Hori, Yuta*; Shigeta, Yasuteru*; Huang, Y.*; Zheng, W.*; Xu, W.*; Zhang, X.*; Kiyanagi, Ryoji; et al.
Angewandte Chemie; International Edition, 63(25), p.e202404843_1 - e202404843_6, 2024/04
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:1 Percentile:63.95(Physics, Nuclear)no abstracts in English
Imatomi, Daisuke*; Ishikawa, Ryosuke*; Nakata, Akira*; Ito, Tatsuya; Han, K.*; Nagasako, Makoto*; Xu, X.*; Omori, Toshihiro*; Kainuma, Ryosuke*
Journal of Phase Equilibria and Diffusion, 45(1), p.3 - 17, 2024/02
Times Cited Count:1 Percentile:13.75(Chemistry, Physical)Phase equilibria in the Mn-Zn binary system were experimentally determined by chemical composition examination, crystal structure determination, and thermal analysis. Major changes were detected for the ,
, and
phases. The
-B2 single-phase region could not be confirmed in the studied system because a disordered body-centered cubic structure, which is identical to the
Mn phase, was confirmed in a quenched sample from the previously proposed region of
phase. The
phase has been controversial whether the phase is separated into
,
, and
phases or not. By studying a diffusion couple and several alloy compositions, it was established that the
,
, and
phases are not separate and comprise a single
phase. Furthermore, the
phase is not present in the Zn-rich region of the system because the corresponding invariant reactions were not detected via thermal analysis.
Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; Xu, P. G.; Yin, F.*
Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02
Times Cited Count:4 Percentile:78.83(Nanoscience & Nanotechnology)Lechner, S.*; Miyagi, Takayuki*; Xu, Z. Y.*; Bissell, M. L.*; Blaum, K.*; Cheal, B.*; Devlin, C. S.*; Garcia Ruiz, R. F.*; Ginges, J. S. M.*; Heylen, H.*; et al.
Physics Letters B, 847, p.138278_1 - 138278_9, 2023/12
Times Cited Count:5 Percentile:77.95(Astronomy & Astrophysics)no abstracts in English
Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:18 Percentile:91.30(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the (
) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R
pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the
Be ground-state as a rather compact nuclear molecule.
Ito, Tatsuya; Xu, X.*; Omori, Toshihiro*; Kainuma, Ryosuke*
Busseiken Dayori, 63(3), p.8 - 10, 2023/10
no abstracts in English
Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.
Nature Physics, 19(12), p.1883 - 1889, 2023/09
Times Cited Count:19 Percentile:94.23(Physics, Multidisciplinary)Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:7 Percentile:83.07(Astronomy & Astrophysics)Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; Gmez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.
Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04
Times Cited Count:12 Percentile:87.89(Physics, Multidisciplinary)We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient O nucleus with large Fermi-surface asymmetry at
100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.
Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
Times Cited Count:25 Percentile:93.09(Chemistry, Multidisciplinary)As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.
Liu, X. J.*; Xu, P. G.; Shiro, Ayumi*; Zhang, S. Y.*; Shobu, Takahisa; Yukutake, Eitaro*; Akita, Koichi*; Zolotoyabko, E.*; Liss, K.-D.*
Journal of Materials Science, 57(46), p.21446 - 21459, 2022/12
Times Cited Count:5 Percentile:35.40(Materials Science, Multidisciplinary)