Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experimental determination of the photooxidation of aqueous I$$^{-}$$ as a source of atmospheric I$$_{2}$$

Watanabe, Kosuke*; Matsuda, Shohei; Cuevas, C. A.*; Saiz-Lopez, A.*; Yabushita, Akihiro*; Nakano, Yukio*

ACS Earth and Space Chemistry (Internet), 3(4), p.669 - 679, 2019/04

 Times Cited Count:8 Percentile:43.59(Chemistry, Multidisciplinary)

The photooxidation of aqueous iodide ions (I$$^{-}$$$$_{(aq)}$$) at sea surface results in the emission of gaseous iodine molecules (I$$_{2}$$$$_{(g)}$$) into the atmosphere. It plays a certain role in the transport of iodine from ocean to the atmosphere in the natural cycle of iodine. In this study, we determined the photooxidation parameters, the molar absorption coefficient ($$varepsilon$$$$_{iodide}$$($$lambda$$)) and the photooxidative quantum yields ($$Phi$$$$_{iodide}$$($$lambda$$)) of I$$^{-}$$$$_{(aq)}$$, in the range of 290-500 nm. Through the investigation of the influence of pH and dissolved oxygen (DO) on $$Phi$$$$_{iodide}$$($$lambda$$), the subsequent emission rates of I$$_{2}$$$$_{(g)}$$ following the photooxidation of I$$^{-}$$$$_{(aq)}$$ in deionized water solution (pH 5.6, DO 7.8 mg L$$^{-1}$$) and artificial seawater solution (pH 8.0, DO 7.0 mg L$$^{-1}$$) were estimated. A global chemistry-climate model employed herein to assess the I$$_{2}$$$$_{(g)}$$ ocean emission on a global scale indicated that the photooxidation of I$$^{-}$$$$_{(aq)}$$ by solar light can enhance the atmospheric iodine budget by up to $$sim$$8% over some oceanic regions.

Journal Articles

Optimal control of ultrafast selection

Yokoyama, Keiichi; Teranishi, Yoshiaki; Toya, Yukio; Shirai, Toshizo; Fukuda, Yuji; Aoyama, Makoto; Akahane, Yutaka; Inoue, Norihiro*; Ueda, Hideki; Yamakawa, Koichi; et al.

Journal of Chemical Physics, 120(20), p.9446 - 9449, 2004/05

 Times Cited Count:6 Percentile:18.77(Chemistry, Physical)

Optimal laser control for ultrafast selection of closely-lying excited states, whose energy separation is smaller than the laser bandwidth, is reported on the two-photon transition of atomic cesium; Cs(6S $$rightarrow$$ 7D$$_{J}$$, J = 5/2 and 3/2). Selective excitation was carried out by pulse shaping of ultrashort laser pulses which were adaptively modulated in a closed-loop learning system handling eight parameters representing the electric field. Two-color fluorescence from the respective excited states was monitored to measure the selectivity. The fitness used in the learning algorithm was evaluated from the ratio of the fluorescence yield. After fifty generations, a pair of nearly transform-limitted pulses were obtained as an optimal pulse shape, proving the effectiveness of "Ramsey fringes" mechanism. The contrast of the selection ratio was improved by $$sim$$ 30 % from the simple "Ramsey fringes" experiment.

2 (Records 1-2 displayed on this page)
  • 1