Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Aoyagi, Mitsuhiro; Makino, Toru*; Oki, Hiroshi*; Uchibori, Akihiro; Okano, Yasushi
Mechanical Engineering Journal (Internet), 11(2), p.23-00459_1 - 23-00459_12, 2024/04
Sonehara, Masateru; Okano, Yasushi; Uchibori, Akihiro; Aoyagi, Mitsuhiro; Oki, Hiroshi*
Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2023/09
An analysis code AQUA-SF has been developed to evaluate the effects of sodium combustion in three dimensions, which enables more detailed elucidation of sodium combustion phenomena and evaluation of the effectiveness of safety measures. In this paper, we examine the multidimensional effects of spray combustion for the SNL-T3 test as a benchmark analysis. In order to simulate the decrease of pressure and the temperature rise near the floor during the test, a new model is developed to take into account temporal cessation of sodium ignition, increased drag coefficient due to droplet deformation and liquid splash effect due to collision between the jet stream and the floor surface, and the results are compared with the test measurements.
Aoyagi, Mitsuhiro; Makino, Toru*; Oki, Hiroshi*; Uchibori, Akihiro; Okano, Yasushi
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05
Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.
JAEA-Research 2019-013, 276 Pages, 2020/03
The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.
Miyakawa, Kazuya; Aoyagi, Kazuhei; Sasamoto, Hiroshi; Akaki, Toshifumi*; Yamamoto, Hajime*
Proceedings of 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future (YSRM 2019 and REIF 2019) (USB Flash Drive), 6 Pages, 2019/12
The construction and operation of geological repositories require excavation and ventilation of galleries, with significant groundwater drainage. Desaturation of rock around galleries is unavoidable and may affect hydraulic properties and redox conditions. This study used numerical modeling to assess the influence of dissolved gas on the degree of saturation of rock surrounding excavated galleries, focusing on siliceous mudstone rock in the 140 m, 250 m, and 350-m-deep galleries of the Horonobe Underground Research Laboratory, Japan. Based on previous
electrical survey, the degree of saturation in the 250 m gallery was higher than that in the 140 m and 350 m galleries. In the Horonobe area, deep groundwater contains high concentrations of dissolved methane, and exsolution of this methane from pore water can affect desaturation. Simple numerical modeling, including simulation of multiphase flows, was undertaken for each gallery to confirm the effect of dissolved gas and rock permeability on desaturation. A sensitivity analysis was performed by varying dissolved gas contents and permeability. Results indicate that the dissolved gas content affects both the degree of saturation and its spatial extent, whereas rock permeability affects only the latter. Higher dissolved gas concentrations result in lower degrees of saturation with a greater spatial extent of desaturation, and higher permeability leads to greater extents of desaturation. It is therefore likely that gas content, rather than rock permeability, caused the observed variations in the saturation degree.
Miyagi, Masanori*; Hongze, W.*; Yoshida, Ryohei*; Kawahito, Yosuke*; Kawakami, Hiroshi*; Shobu, Takahisa
Scientific Reports (Internet), 8(1), p.12944_1 - 12944_10, 2018/08
Times Cited Count:58 Percentile:83.76(Multidisciplinary Sciences)The behavior inside the metal during laser welding is very important because it greatly affects the material strength, defect generation, and so on. In this study, weld pool dynamics in laser welding of various series of aluminum alloys were investigated by the
synchrotron radiation X-ray phase contrast imaging system. The experimental results showed that metal irradiated by laser was evaporated immediately, which generated the keyhole. Then metal surrounding the keyhole was melted gradually with the heat from keyhole. The growth rate of keyhole depth had a positive linear correlation with the total content of low boiling temperature elements (TCE), so did the keyhole depth and diameter at the stable stage. Then, by repeating the experiment, we succeeded in quantifying the effect of alloying elements on the dynamics of the weld pool in laser welding of aluminum alloys.
Aso, Tomokazu; Teshigawara, Makoto; Hasegawa, Shoichi; Muto, Hideki; Aoyagi, Katsuhiro; Nomura, Kazutaka; Takada, Hiroshi
Journal of Physics; Conference Series, 1021(1), p.012085_1 - 012085_4, 2018/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Aso, Tomokazu; Teshigawara, Makoto; Hasegawa, Shoichi; Aoyagi, Katsuhiro*; Muto, Hideki*; Nomura, Kazutaka*; Takada, Hiroshi; Ikeda, Yujiro
JAEA-Technology 2017-021, 75 Pages, 2017/08
Liquid hydrogen is employed as a cold neutron moderator material at the spallation neutron source of Materials and Life science experimental Facility of Japan Proton Accelerator Research Complex (J-PARC). From January 2015, it became observable that the differential pressure between heat exchangers and an 80 K adsorber (ADS) in a helium refrigerator system increased with operating time. In November 2015, the differential pressure rise became more significant, leading to degrade the refrigerating performance in cooling liquid hydrogen. In order to investigate the cause of the abnormal differential pressure rise between the heat exchangers and the ADS, we carried out visual inspection inside the heat exchangers and analyzed the impurities contained in the helium gas. Unfortunately, we could not identify the impurities causing the performance degradation, but observed a trace of oil in the inlet piping of the heat exchanger. Based on investigations of the abnormal events occurred in the refrigerators with similar refrigerating capacity at other facilities, we took measures that cleaning the heat exchangers with Freon and replacing the ADS with new one. As a result, the differential pressure rise phenomenon was removed to recover the performance. We have detected oil from the Freon used for cleaning the heat exchangers and at a felt supporting charcoal packed in the ADS. In particular, oil was accumulated in membranous form onto the felt at the entrance side in the ADS. The amount of oil contained in the helium gas was about 10 ppb or so, less than the design value, in the helium refrigerator. However, the oil accumulated onto the felt in the ADS through long operating period may cause abnormal differential pressure rise, leading to the performance degradation of the helium refrigerator. Further study is needed to specify the cause more clearly.
Aoyagi, Kazuhei; Kubota, Kenji*; Nakata, Eiji*; Suenaga, Hiroshi*; Nohara, Shintaro*
JAEA-Research 2017-004, 91 Pages, 2017/06
In this study, we performed seismic tomography, seismic refraction survey, resistivity tomography, and hydraulic tests to investigate the hydro-mechanical property of the excavation damaged zone (EDZ) in the 250 m gallery of the Horonobe Underground Research Laboratory. As a result of seismic tomography, seismic velocity is significantly decreased within 1 m from the gallery wall. The decrease of seismic velocity is related to the density of fracture induced around the gallery wall as a result of the gallery excavation. Thus the extent of the fractures induced by gallery excavation, i.e., EDZ fractures is clarified to be within 1.0 m from the gallery wall. The enhanced hydraulic conductivity was detected within 0.5 to 1.0 m from the gallery wall on the basis of the result of hydraulic tests. This is almost consistent with the extent of the region that seismic velocity is significantly decreased. Therefore, it is estimated that EDZ fractures induced around the gallery leads to the increase of hydraulic conductivity. In addition, the desaturation zone around the gallery is not induced as a result of resistivity tomography. From these results, the hydro-mechanical property of the EDZ is clarified in detail. Also, the in situ tests and evaluation method applied in this study are appropriate to investigate the EDZ in detail.
Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo*; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; et al.
JAEA-Research 2016-025, 313 Pages, 2017/03
The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350m. Integration of work from different disciplines into a "geosynthesis" ensures that the Phase II goals have been successfully achieved and identifies key issues that need to made to be addressed in the Phase II investigations Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a "knowledge base" that will reinforce the technical basis for both implementation and the formulation of safety regulations.
Wakai, Eiichi; Kanemura, Takuji; Kondo, Hiroo; Hirakawa, Yasushi; Ito, Yuzuru*; Higashi, Takuma*; Suzuki, Akihiro*; Fukada, Satoshi*; Yagi, Juro*; Tsuji, Yoshiyuki*; et al.
Nuclear Materials and Energy (Internet), 9, p.278 - 285, 2016/12
The EVEDA (Engineering Validation and Engineering Design Activity) lithium test loop with the world's highest flow rate was constructed and has been operated mainly at 250
C. It succeeded in generating a 100 mm wide and 25 mm thick free-surface lithium flow along a concave back plate steadily at a high-speed of 15 m/s at 250
C for 1,300 h under the Broader Approach Activities. A new wave height measuring method (laser-probe method) was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the Li flow (the thickness variation of
1 mm or less) required for the actual liquid Li target of the IFMIF was satisfied and the feasibility of the long-term stable liquid Li flow was verified. The results of the other engineering validation tests such as lithium purification tests and the engineering design of lithium facility have also been evaluated and summarized.
Wakai, Eiichi; Watanabe, Kazuyoshi*; Ito, Yuzuru*; Suzuki, Akihiro*; Terai, Takayuki*; Yagi, Juro*; Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; et al.
Plasma and Fusion Research (Internet), 11, p.2405112_1 - 2405112_4, 2016/11
Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; et al.
JAEA-Review 2016-014, 274 Pages, 2016/08
We synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second midterm research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase).
Np using variable neutron field at KURRI-LINACTakahashi, Yoshiyuki*; Hori, Junichi*; Sano, Tadafumi*; Yagi, Takahiro*; Yashima, Hiroshi*; Pyeon, C. H.*; Nakamura, Shoji; Harada, Hideo
Proceedings of International Conference on the Physics of Reactors; Unifying Theory and Experiments in the 21st Century (PHYSOR 2016) (USB Flash Drive), p.645 - 652, 2016/05
For the reduction of radioactive toxicities, feasibility study of nuclear transmutation of minor actinides (MAs) and long-lived fission products (LLFPs) by utilizing innovative nuclear reactor system (i.e. fast breeder reactors and accelerator-driven systems) has been actively conducted. To design these nuclear reactor systems, the accurate nuclear data are required. Therefore, to obtain more accurate nuclear data, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides(AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program". In a part of this project, the nuclear data of MAs are verified in the variable neutron spectra field at Kyoto University Research Reactor Institute-LINear ACcelerator (KURRI-LINAC) and Kyoto University Critical Assembly (KUCA). And the differential TOF data is cross-checked with an integral data for the validation of
Np,
Am, and
Am. In this summary, the results of reaction rate of neutron capture cross section of
Np are reported as an example in the study.
Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03
The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.
Hama, Katsuhiro; Mizuno, Takashi; Sasao, Eiji; Iwatsuki, Teruki; Saegusa, Hiromitsu; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Yokota, Hideharu; et al.
JAEA-Research 2015-007, 269 Pages, 2015/08
We have synthesised the research results from Mizunami/Horonobe URLs and geo-stability projects in the second mid-term research phase. It could be used as technical bases for NUMO/Regulator in each decision point from sitting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High quality construction techniques and field investigation methods have been developed and implemented and these will be directly applicable to the National Disposal Program (along with general assessments of hazardous natural events and processes). It will be crucial to acquire technical knowledge on decisions of partial backfilling and final closure by actual field experiments in Mizunami/Horonobe URLs as main themes for the next phases.
Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki*; Katabuchi, Tatsuya*; et al.
EPJ Web of Conferences, 93, p.06001_1 - 06001_5, 2015/05
Times Cited Count:4 Percentile:83.10(Physics, Multidisciplinary)Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background, overall plan, and recent progress of the AIMAC project will be reviewed.
Hattori, Takanori; Sano, Asami; Arima, Hiroshi*; Komatsu, Kazuki*; Yamada, Akihiro*; Inamura, Yasuhiro; Nakatani, Takeshi; Seto, Yusuke*; Nagai, Takaya*; Utsumi, Wataru; et al.
Nuclear Instruments and Methods in Physics Research A, 780, p.55 - 67, 2015/04
Times Cited Count:94 Percentile:99.07(Instruments & Instrumentation)PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (
/
0.6%) and the accessible
-spacing range (0.2-8.4
) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.
Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Hoashi, Eiji*; Fukada, Satoshi*; Suzuki, Akihiro*; Yagi, Juro*; Tsuji, Yoshiyuki*; et al.
Proceedings of Plasma Conference 2014 (PLASMA 2014) (CD-ROM), 2 Pages, 2014/11
In the IFMIF/EVEDA (International Fusion Materials Irradiation Facility/ Engineering Validation and Engineering Design Activity), the validation tests of the EVEDA lithium test loop with the world's highest flow rate of 3000 L/min was succeeded in generating a 100 mm-wide and 25 mm-thick free-surface lithium flow steadily under the IFMIF operation condition of a high-speed of 15 m/s at 250
C in a vacuum of 10
Pa. Some excellent results of the recent engineering validations including lithium purification, lithium safety, and remote handling technique were obtained, and the engineering design of lithium facility was also evaluated. These results will advance greatly the development of an accelerator-based neutron source to simulate the fusion reactor materials irradiation environment as an important key technology for the development of fusion reactor materials.
Sano, Asami; Hattori, Takanori; Arima, Hiroshi*; Yamada, Akihiro*; Tabata, Satoshi*; Kondo, Masahiro*; Nakamura, Akihiro*; Kagi, Hiroyuki*; Yagi, Takehiko*
Review of Scientific Instruments, 85(11), p.113905_1 - 113905_8, 2014/11
Times Cited Count:53 Percentile:86.69(Instruments & Instrumentation)We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm
. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.