Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hori, Satoshi*; Kanno, Ryoji*; Kwon, O.*; Kato, Yuki*; Yamada, Takeshi*; Matsuura, Masato*; Yonemura, Masao*; Kamiyama, Takashi*; Shibata, Kaoru; Kawakita, Yukinobu
Journal of Physical Chemistry C, 126(22), p.9518 - 9527, 2022/06
Times Cited Count:8 Percentile:58.01(Chemistry, Physical)Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.
Arai, Shigeki; Yonezawa, Yasushi*; Okazaki, Nobuo*; Matsumoto, Fumiko*; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu*; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide*; et al.
Acta Crystallographica Section D, 71(3), p.541 - 554, 2015/03
Times Cited Count:8 Percentile:53.16(Biochemical Research Methods)The crystal structure of halophilic -lactamase from
sp.560 (HaBLA) was determined using X-ray crystallography. Moreover, the locations of bound Sr
and Cs
ions were identified by anomalous X-ray diffraction. The location of one Cs
specific binding site was identified on HaBLA even in the presence of 9-fold molar excess of Na
(90 mM Na
/10 mM Cs
). This Cs
binding site is formed by two main-chain O atoms and an aromatic ring of a side chain of Trp. An aromatic ring of Trp interacts with Cs
by the cation-
interaction. The observation of a selective and high-affinity Cs
binding site provides important information that is useful for designing artificial Cs
binding sites useful in bioremediation of radioactive isotopes.
Fujita, Kaoru; Yamano, Hidemasa; Kubo, Shigenobu*; Eto, Masao*; Yamada, Yumi*; Toyoshi, Akira*
Proceedings of 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8) (USB Flash Drive), 6 Pages, 2012/12
no abstracts in English
Hagiwara, Hiroyuki; Yamada, Yumi*; Eto, Masao*; Oyama, Kazuhiro*; Watanabe, Osamu*; Yamano, Hidemasa
Proceedings of 8th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-8) (USB Flash Drive), 8 Pages, 2012/12
The self-actuated shutdown system (SASS), which is selected for Japan Sodium-cooled Fast Reactor (JSFR), is a passive reactor shutdown system utilizing a Curie point electromagnet (CPEM). With CPEM, an excessive fuel outlet temperature rise is sensed and the control rods are released into the core, and the reactor can be shutdown. Therefore it is important for feasibility of SASS to be established by assuring a quick response of CPEM to the coolant temperature rise. In this paper, a device named "flow collector", which collects flows discharged from six fuel subassemblies surrounding CPEM backup control rods, has been proposed to ensure a shorter response time.
Sato, Satoshi; Iida, Hiromasa; Ochiai, Kentaro; Konno, Chikara; Nishitani, Takeo; Morota, Hidetsugu*; Nashif, H.*; Yamada, Masao*; Masuda, Fukuzo*; Tamamizu, Shigeyuki*; et al.
Nuclear Technology, 168(3), p.843 - 847, 2009/12
Times Cited Count:7 Percentile:44.26(Nuclear Science & Technology)It takes huge or unrealistic amounts of time to prepare accurate calculation inputs in shielding design for very large and complicated structure such as fusion reactors. For that reason, we have developed an automatic conversion system from three dimensional CAD drawing data into input data of the calculation geometry for a three dimensional Monte Carlo radiation transport calculation code MCNP, and applied it to an ITER benchmark model. This system consists of a void creation program (CrtVoid) for CAD drawing data and a conversion program (GEOMIT) from CAD drawing data to MCNP input data. CrtVoid creates void region data by subtracting solid region data from the whole region by Boolean operation. The void region data is very large and complicated geometry. The program divides the overall region to many small cubes, and the void region data can be created in each cube. GEOMIT generates surface data for MCNP data based on the CAD data with voids. These surface data are connected, and cell data for MCNP input data are generated. In generating cell data, additional surfaces are automatically created in the program, and undefined space and duplicate cells are removed. We applied this system to the ITER benchmark model. We successfully created void region data, and MCNP input data. We calculated neutron flux and nuclear heating. The calculation results agreed well with those with MCNP inputs generated from the same CAD data with other methods.
Yamada, Tomonori; Ogino, Masao*; Yoshimura, Shinobu*
Nihon Keisan Kogakkai Rombunshu (Internet), 2009(14), 7 Pages, 2009/08
Computation efficiency of the balancing domain decomposition method is investigated in this paper. An iterative substructuring method with coarse grid correction is one of the most effective methods for parallel computing of large scale structural finite element analyses. In this study, a prediction curve of parallel computation cost of the balancing domain decomposition method is proposed, and the optimal number of subdomains is estimated. Numerical validation of the optimal number of subdomains is conducted and the measured computation time with the optimal number of subdomains shows better computation performance than those with other numbers of subdomains.
Kurosaki, Yukio*; Yamachi, Hiroshi*; Katsunuma, Yoshio*; Nakata, Masao*; Kuwahara, Hideki*; Yamada, Fumitaka*; Matsushita, Kiyoshi*; Sato, Toshinori*
JAEA-Research 2008-048, 274 Pages, 2008/03
A junction space between a super deep shaft and horizontal drifts forms a 3-dimensional geo-structure, which would take a complicated mechanical behavior during a junction excavation. However, a quantitative design method for a deep junction has not yet established. In order to examine a collapse mechanism of super deep shaft junction, we have conducted literature surveys and interview studies concerned with a collapses. Considering the results of investigations with reviews of intellectuals, the collapse mechanism depends on both a construction procedure of shaft junction and a geological condition. On the other hand, where a deep junction intersects faults and/or fractures with a large angle, a collapse called taka-nuke may occur and a numerical studies that can simulate a practical rock mass behavior around a shaft junction should be carry out. We demonstrate finite difference method is most adequate for these simulations with intellectual review.
Kawahata, Kazuo*; Kawano, Yasunori; Kusama, Yoshinori; Mase, Atsushi*; Sasao, Mamiko*; Sugie, Tatsuo; Fujita, Takaaki; Fukuda, Takeshi*; Fukuyama, Atsushi*; Sakamoto, Yoshiteru; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 83(2), p.195 - 198, 2007/02
no abstracts in English
Shaaban, N.*; Masuda, Fukuzo*; Nasif, H.*; Yamada, Masao*; Sawamura, Hidenori*; Morota, Hidetsugu*; Sato, Satoshi; Iida, Hiromasa; Nishitani, Takeo
Proceedings of 14th International Conference on Nuclear Engineering (ICONE-14) (CD-ROM), 7 Pages, 2006/07
no abstracts in English
Ioki, Kimihiro*; Barabaschi, P.*; Barabash, V.*; Chiocchio, S.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Gervash, A.*; Ibbott, C.*; Jones, L.*; et al.
Nuclear Fusion, 43(4), p.268 - 273, 2003/04
Times Cited Count:21 Percentile:54.08(Physics, Fluids & Plasmas)Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same, there have been several detailed design improvements resulting from efforts to raise reliability, to improve maintainability and to save money. One of the most important achievements in the VV R&D has been demonstration of the necessary fabrication and assembly tolerances. Recently the deformation due to cutting of the port extension was measured and it was shown that the deformation is small and acceptable. Further development of advanced methods of cutting, welding and NDT on a thick plate have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R&D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated.
Ioki, Kimihiro*; Akiba, Masato; Cardella, A.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Lorenzetto, P.*; Miki, Nobuharu*; Osaki, Toshio*; Rozov, V.*; et al.
Fusion Engineering and Design, 61-62, p.399 - 405, 2002/11
Times Cited Count:11 Percentile:57.49(Nuclear Science & Technology)We report progress on the ITER-FEAT Blanket design and R&D during 2001-2002. Four major sub-components (FW, shield body, flexible support and electrical connection) have been highlighted. Regarding the FW, design on a separate FW panel concept has progressed, and heat load tests on a small-scale mock-up have been successfully performed with 0.7 MW/m, 13000 cycles. Full-scale separate FW panels (dimensions: 0.9
0.25
0.07 m) have been fabricated by HIPing and brazing. Regarding the shield body, a radial flow cooling design has been developed, and full-scale partial mock-ups have been fabricated by using water-jet cutting. A separate FW panel was assembled with one the shield body mock-ups. Regarding the flexible support, mill-annealed Ti (easier fabricability) alloy has been selected, and the remote assembly has been considered in the design. In mechanical tests, the requires buckling strength and mechanical fatigue characteristics have been confirmed. Regarding the electrical connection, one-body structure design without welding joints has been developed. Mechanical fatigue tests in the 3 directions, have been carried out, and thermal fatigue tests and electrical tests in a solenoidal magnetic field have been performed. Feasibility of the design has been confirmed. Through progress on design and R&D of the blanket, cost reduction has been achieved, and feasibility of design and fabricability of the components have been confirmed.
Yamada, Fumitaka*; Kita, Haruyuki*; Nakata, Masao*
PNC TJ7176 98-002, 135 Pages, 1998/03
None
Matsui, Yoshinori; Hoshiya, Taiji; Jitsukawa, Shiro; Tsukada, Takashi; Omi, Masao; ; Oyamada, Rokuro;
Journal of Nuclear Materials, 233-237, p.188 - 191, 1996/00
Times Cited Count:5 Percentile:44.83(Materials Science, Multidisciplinary)no abstracts in English
Omori, Junji*; Kobayashi, Takeshi; Yamada, Masao*; Iida, Hiromasa; Horie, Tomoyoshi
Fusion Engineering and Design, 9, p.207 - 211, 1989/00
no abstracts in English
Iida, Hiromasa; ; Yamada, Masao*; Suzuki, Tatsushi*; Honda, Tsutomu*; Omura, Hiroshi*; Ito, Shinichi*
JAERI-M 86-149, 314 Pages, 1986/11
This report describes design study results of the FER plant system. The purpose of this study is to have an image of the FER plant system as a whole by designing major auxiliary systems, reactor building and maintenance and radwaste desposal systems. The major auxiliary systems include tritium, cooling, evacuation and fueling systems. For these each systems, flowdiagrams are studied and designs of devices and pipings are conducted. In the reactor building design, layout of the above auxiliary systems in the building is studied sith careful zoning concept by the radiation level. Structual integrity of the reactor building is also studied including seismic analysis. In the design of the maintenance and radwaste system flowdiagram of failed reactor components is developed and transfer vehicles and buildings are designed. Finally assuming JAERI Naka site as the reactor site layout of the shole FER plant system is developed.
Kambara, Toyozo; Uno, Hidero; Shoda, Katsuhiko; Hirata, Yutaka; Shoji, Tsutomu; Kohayakawa, Toru; Takayanagi, Hiroshi; Fujimura, Tsutomu; Morita, Morito; Ichihara, Masahiro; et al.
JAERI 1045, 11 Pages, 1963/03
no abstracts in English
JRR-2 Control Office; Kambara, Toyozo; Shoda, Katsuhiko; Hirata, Yutaka; Shoji, Tsutomu; Kohayakawa, Toru; Morozumi, Minoru; Kambayashi, Yuichiro; Shitomi, Hajimu; Kokanezawa, Takashi; et al.
JAERI 1027, 57 Pages, 1962/09
no abstracts in English
JRR-2 Critical Experiments Group; Kambara, Toyozo; Shoda, Katsuhiko; Hirata, Yutaka; Shoji, Tsutomu; Kohayakawa, Toru; Morozumi, Minoru; Kambayashi, Yuichiro; Shitomi, Hajimu; Kokanezawa, Takashi; et al.
JAERI 1025, 62 Pages, 1962/03
no abstracts in English
Tobita, Kenji; Nishio, Satoshi; Yamada, Masao*; Kakudate, Satoshi; Nakamura, Hirofumi; Hayashi, Takumi; Enoeda, Mikio; Tsuru, Daigo; Kawashima, Hisato; Kurita, Genichi; et al.
no journal, ,
Maintenance is one of critical issues that determines the torus configuration of a fusion reactor. For high availability of operation, in-vessel components should be replaceable easily. On the other hand, the in-vessel components must be supported robustly enough to withstand the electromagnetic forces acting on a disruption. In addition, the fraction of the structural material of blanket should be reduced to keep the breeding region high as possible. In order to meet these requirements, JAEA has attempted to find a sector transport maintenance scheme based on the existing technologies in industries. Possible ideas on transportation of the sector, cask and support structure of toroidal field coils for the sector transport maintenance will be presented.