Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Daido, Hiroyuki*; Yamada, Tomonori; Saruta, Koichi; Miyabe, Masabumi; Ito, Chikara; Shibata, Takuya; Inoue, Kaoru*; Terabayashi, Ryohei*; Hasegawa, Shuichi*
Physica Scripta, 98(3), p.035112_1 - 035112_22, 2023/02
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Characterization of kW class quasi-continuous wave (a pulse duration of 10 ms) laser interaction with metal targets and those with metal oxide targets are presented in respect to the laser induced breakdown and the successive laser induced melting and evaporation coupled with a mechanical response followed by ejection of various kinds of particles and fragments. An experiment was performed using fiber lasers coupled with a high-speed camera to observe dynamics of the interaction. Ejected fine particles were collected using a cascade impactor and a home-made collector and were observed with electron microscopes. Shapes of irradiation marks were observed with a digital optical microscope. We also measured total ejected mass from a target. The experimental results reveal that firstly the laser threshold intensity of the interaction with the metal target was lower and more stable than those with the metal oxide targets. Secondly, in the stainless steel targets, the dynamics of molten layer created by thermal conduction from the laser heated thin layer and successive particle ejection with less mechanical response by the adjacent solid layer are dominant processes, while in the metal oxide targets, the fracturing in the relatively deeper interaction region coupled with brittle material response having relatively large laser shot to shot fluctuation appears to play a significant role in addition to the laser induced melting.
Ogawa, Shuichi*; Tsuda, Yasutaka; Sakamoto, Tetsuya*; Okigawa, Yuki*; Masuzawa, Tomoaki*; Yoshigoe, Akitaka; Abukawa, Tadashi*; Yamada, Takatoshi*
Applied Surface Science, 605, p.154748_1 - 154748_6, 2022/12
Times Cited Count:6 Percentile:59.05(Chemistry, Physical)Immersion of graphene in KOH solution improves its mobility on SiO/Si wafers. This is thought to be due to electron doping by modification with K atoms, but the K atom concentration C in the graphene has not been clarified yet. In this study, the C was determined by XPS analysis using high-brilliance synchrotron radiation. The time evolution of C was determined by real-time observation, and the C before irradiation of synchrotron radiation was estimated to be 0.94%. The C 1s spectrum shifted to the low binding energy side with the desorption of K atoms. This indicates that the electron doping concentration into graphene is decreasing, and it is experimentally confirmed that K atoms inject electrons into graphene.
Daido, Hiroyuki*; Yamada, Tomonori; Furukawa, Hiroyuki*; Ito, Chikara; Miyabe, Masabumi; Shibata, Takuya; Hasegawa, Shuichi*
Journal of Laser Applications, 33(1), p.012001_1 - 012001_16, 2021/02
Times Cited Count:2 Percentile:19.48(Materials Science, Multidisciplinary)Ogawa, Shuichi*; Yamaguchi, Hisato*; Holby, E. F.*; Yamada, Takatoshi*; Yoshigoe, Akitaka; Takakuwa, Yuji*
Journal of Physical Chemistry Letters (Internet), 11(21), p.9159 - 9164, 2020/11
Times Cited Count:3 Percentile:15.53(Chemistry, Physical)Atomically thin layers of graphene have been proposed to protect surfaces through the direct blocking of corrosion reactants such as oxygen with low added weight. The long term efficacy of such an approach, however, is unclear due to the long-term desired protection of decades and the presence of defects in as-synthesized materials. Here, we demonstrate catalytic permeation of oxygen molecules through previously-described impermeable graphene by imparting sub-eV kinetic energy to molecules. These molecules represent a small fraction of a thermal distribution thus this exposure serves as an accelerated stress test for understanding decades-long exposures. The permeation rate of the energized molecules increased 2 orders of magnitude compared to their non-energized counterpart. Graphene maintained its relative impermeability to non-energized oxygen molecules even after the permeation of energized molecules indicating that the process is non-destructive and a fundamental property of the exposed material.
Samarakoon, A. M.*; Takahashi, Mitsuru*; Zhang, D.*; Yang, J.*; Katayama, Naoyuki*; Sinclair, R.*; Zhou, H. D.*; Diallo, S. O.*; Ehlers, G.*; Tennant, D. A.*; et al.
Scientific Reports (Internet), 7(1), p.12053_1 - 12053_8, 2017/09
Times Cited Count:10 Percentile:55.28(Multidisciplinary Sciences)Yoshigoe, Akitaka; Yamada, Yoichi*; Taga, Ryo*; Ogawa, Shuichi*; Takakuwa, Yuji*
Japanese Journal of Applied Physics, 55(10), p.100307_1 - 100307_4, 2016/09
Times Cited Count:5 Percentile:23.64(Physics, Applied)Synchrotron radiation photoelectron spectroscopy during the oxidation of the Si(100)21 surface at room temperature revealed the existence of the molecularly adsorbed oxygen, which was considered to be absent. The O 1s spectra was found to be similar to that of the oxidation of Si(111)77 surfaces. Also the molecular oxygen was appeared after the initial surface oxides, indicating that this was not a precursor for dissociation oxygen adsorption onto the clean surface. We have proposed presumable structural models for atomic configurations, where the molecular oxygen was resided on the oxidized silicon with two oxygen atoms at the backbonds.
Yamaguchi, Hisato*; Ogawa, Shuichi*; Watanabe, Daiki*; Hozumi, Hideaki*; Gao, Y.*; Eda, Goki*; Mattevi, C.*; Fujita, Takeshi*; Yoshigoe, Akitaka; Ishizuka, Shinji*; et al.
Physica Status Solidi (A), 213(9), p.2380 - 2386, 2016/09
Times Cited Count:14 Percentile:50.63(Materials Science, Multidisciplinary)We report valence-band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. The degree of oxygen functionalization was controlled by annealing temperature, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in the density of states around the Fermi level upon thermal annealing at 600C. The result indicates that while there is an apparent bandgap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of bandgap closure was correlated with the electrical, chemical, and structural properties to determine a set of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of 500C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to an as-synthesized counterpart.
Wakimoto, Shuichi; Ikeuchi, Kazuhiko*; Arai, Masatoshi; Fujita, Masaki*; Kajimoto, Ryoichi; Kawamura, Sho*; Matsuura, Masato*; Nakajima, Kenji; Yamada, Kazuyoshi*
JPS Conference Proceedings (Internet), 8, p.034013_1 - 034013_6, 2015/09
Ogawa, Shuichi*; Yamada, Takatoshi*; Ishizuka, Shinji*; Yoshigoe, Akitaka; Hasegawa, Masataka*; Teraoka, Yuden; Takakuwa, Yuji*
Japanese Journal of Applied Physics, 52(11), p.110122_1 - 110122_8, 2013/11
Times Cited Count:20 Percentile:62.30(Physics, Applied)Wakimoto, Shuichi; Ishii, Kenji; Kimura, Hiroyuki*; Ikeuchi, Kazuhiko*; Yoshida, Masahiro*; Adachi, Tadashi*; Casa, D.*; Fujita, Masaki*; Fukunaga, Yasushi*; Gog, T.*; et al.
Physical Review B, 87(10), p.104511_1 - 104511_7, 2013/03
Times Cited Count:10 Percentile:42.20(Materials Science, Multidisciplinary)Ogawa, Shuichi*; Yamada, Takatoshi*; Ishizuka, Shinji*; Yoshigoe, Akitaka; Hasegawa, Masataka*; Teraoka, Yuden; Takakuwa, Yuji*
Japanese Journal of Applied Physics, 51(11), p.11PF02_1 - 11PF02_7, 2012/11
Times Cited Count:30 Percentile:72.94(Physics, Applied)Matsuura, Masato*; Fujita, Masaki*; Hiraka, Haruhiro*; Kofu, Maiko*; Kimura, Hiroyuki*; Wakimoto, Shuichi; Perring, T. G.*; Frost, C. D.*; Yamada, Kazuyoshi*
Physical Review B, 86(13), p.134529_1 - 134529_8, 2012/10
Times Cited Count:7 Percentile:30.99(Materials Science, Multidisciplinary)Ogawa, Shuichi*; Yamada, Takatoshi*; Ishizuka, Shinji*; Watanabe, Daiki*; Yoshigoe, Akitaka; Hasegawa, Masataka*; Teraoka, Yuden; Takakuwa, Yuji*
Hyomen Kagaku, 33(8), p.449 - 454, 2012/08
Graphene-on-insulator structures are required for fabrication of the graphene transistor. Diamond has been attracted as the substrate for graphene growth because it has a larger band gap and break down voltage compared with SiC. The detail of graphitization on a diamond surface has not been clarified yet because the nondestructive evaluation for graphene-on-diamond (GOD) structure was hard. In this study, we have developed an evaluation method of GOD based on the photoemission spectroscopy using synchrotron radiation focusing the shift of photoelectron spectra due to band bending. We can clearly determine the graphitization temperature on the diamond C(111) surface as approximately 1120 K, which is lower than that on an SiC substrate. It is also confirmed from C 1s photoelectron spectra, there is the buffer layer at the interface between the grapheme layer and the diamond substrate.
Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.
Physica B; Condensed Matter, 406(12), p.2443 - 2447, 2011/06
Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Aizawa, Kazuya; Arai, Masatoshi; et al.
Physica B; Condensed Matter, 406(12), p.2443 - 2447, 2011/06
Times Cited Count:3 Percentile:15.38(Physics, Condensed Matter)Sakaguchi, Yoshifumi; Kira, Hiroshi; Oku, Takayuki; Shinohara, Takenao; Suzuki, Junichi; Sakai, Kenji; Nakamura, Mitsutaka; Suzuya, Kentaro; Arai, Masatoshi; Takeda, Masayasu; et al.
Nuclear Instruments and Methods in Physics Research A, 634(1, Suppl.), p.S122 - S125, 2011/04
Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro; Mizuno, Fumio; Nakajima, Kenji; Kawamura, Seiko; Yokoo, Tetsuya*; Nakatani, Takeshi; Maruyama, Ryuji; Soyama, Kazuhiko; et al.
Journal of the Physical Society of Japan, 80(Suppl.B), p.SB025_1 - SB025_6, 2011/01
Times Cited Count:109 Percentile:94.35(Physics, Multidisciplinary)Wakimoto, Shuichi; Hiraka, Haruhiro*; Kudo, Kazutaka*; Okamoto, Daichi*; Nishizaki, Terukazu*; Kakurai, Kazuhisa; Hong, T.*; Zheludev, A.*; Tranquada, J. M.*; Kobayashi, Norio*; et al.
Physical Review B, 82(6), p.064507_1 - 064507_7, 2010/08
Times Cited Count:8 Percentile:36.52(Materials Science, Multidisciplinary)no abstracts in English
Hiraka, Haruhiro*; Hayashi, Yoichiro*; Wakimoto, Shuichi; Takeda, Masayasu; Kakurai, Kazuhisa; Adachi, Tadashi*; Koike, Yoji*; Yamada, Ikuya*; Miyazaki, Masanori*; Hiraishi, Masatoshi*; et al.
Physical Review B, 81(14), p.144501_1 - 144501_6, 2010/04
Times Cited Count:16 Percentile:56.05(Materials Science, Multidisciplinary)Hiraka, Haruhiro*; Wakimoto, Shuichi; Takeda, Masayasu; Kakurai, Kazuhisa; Matsumura, Daiju; Nishihata, Yasuo; Mizuki, Junichiro; Yamada, Kazuyoshi*
Journal of Physics; Conference Series, 200, p.012059_1 - 012059_4, 2010/02
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)We studied Fe-dopant effects on spin correlations in BiPbSrCuO. Magnetic neutron elastic scattering, which is absent in a pristine sample, has been observed at incommensurate positions with an incommensurability of 0.2. Surprisingly, this anomalously large follows a linear relation even in the overdoped region, unlike for LaSrCuO. We discuss this specific feature observed in the overdoped phase from a dynamical stripe viewpoint.