Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design of 250kW LBE spallation target for the Japan Proton Accelerator Research Complex (J-PARC)

Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Sugawara, Takanori; Wan, T.; Yamaguchi, Kazushi*; Yoshimoto, Hidemitsu

NEA/CSNI/R(2017)2 (Internet), p.111 - 116, 2017/06

Japan Atomic Energy Agency (JAEA) proposes to reduce the environmental impact caused from high-level radioactive waste by using Accelerator-driven system (ADS). To realize ADS, JAEA plans to build the Transmutation Experimental Facility (TEF) within the framework of J-PARC project. For the JAEA-proposed ADS, lead-bismuth eutectic alloy (LBE) is adopted as a coolant for subcritical core and spallation target. By using TEF in J-PARC, we are planning to solve technical difficulties for LBE utilization by completion of the data for the design of ADS. The 250kW LBE spallation target will be located in TEF facility to prepare material irradiation database. Various R&Ds for important technologies required to build the facilities are investigated such as oxygen content control, instruments development, remote handling techniques for target maintenance, and spallation target design. The large scale LBE loops for 250kW target mock up and material corrosion studies are also manufactured and ready for various experiments. The latest status of 250kW LBE spallation target optimization will be described in the presentation.

JAEA Reports

Fabrication and test results of testing equipment for remote-handling of MA fuel, 1; Testing equipment for fuel cooling

Nishihara, Kenji; Tazawa, Yujiro; Inoue, Akira; Sugawara, Takanori; Tsujimoto, Kazufumi; Sasa, Toshinobu; Obayashi, Hironari; Yamaguchi, Kazushi; Kikuchi, Masashi*

JAEA-Technology 2015-051, 47 Pages, 2016/03

JAEA-Technology-2015-051.pdf:3.6MB

This report summarizes fabrication and test results of a testing equipment for fuel cooling that is a component of the testing equipment for remote-handling of highly-radioactive MA fuels in the transmutation physics experimental facility (TEF-P) planned in the J-PARC. Evaluation formula of pressure drop and temperature increase used in the design of TEF-P was validated by the test, and, feasibility of cooling concept was confirmed.

JAEA Reports

Measurement experiment of oxygen concentration in liquid lead-bismuth eutectic; Fabrication of oxygen sensor and measurement under static condition

Sugawara, Takanori; Yamaguchi, Kazushi

JAEA-Technology 2015-022, 21 Pages, 2015/08

JAEA-Technology-2015-022.pdf:9.18MB

The oxygen sensors to measure the oxygen concentration in liquid LBE (lead-bismuth eutectic) were fabricated for future use in LBE-cooled ADS (accelerator-driven system) or LBE test loops. Two types of oxygen sensors were fabricated and used for the measurement under the oxygen saturated condition. Through the measurement experiment, it was confirmed that the electromotive force (EMF) from Pt-type sensor was reliable under 350$$^{circ}$$C to 450$$^{circ}$$C LBE temperature. The Pt-type sensor will be the first candidate for the use in LBE test loops.

Journal Articles

J-PARC transmutation experimental facility programme

Sasa, Toshinobu; Takei, Hayanori; Saito, Shigeru; Obayashi, Hironari; Nishihara, Kenji; Sugawara, Takanori; Iwamoto, Hiroki; Yamaguchi, Kazushi; Tsujimoto, Kazufumi; Oigawa, Hiroyuki

NEA/CSNI/R(2015)2 (Internet), p.85 - 91, 2015/06

Nuclear transmutation got much interested as an effective option of nuclear waste management. Japan Atomic Energy Agency (JAEA) proposes the transmutation of minor actinides (MA) by accelerator-driven system (ADS) using lead-bismuth alloy (Pb-Bi). To obtain the data for ADS design, JAEA plans to build a Transmutation Experimental Facility (TEF) in the J-PARC project. TEF consists of two buildings, an ADS target test facility (TEF-T) with 400MeV-250kW Pb-Bi target, and a Transmutation Physics Experimental Facility (TEF-P), which set up a fast critical assembly driven by low power proton beam with MA fuel. In TEF-T, irradiation test for materials, and engineering tests for Pb-Bi target operation will be performed. Various research plans such as nuclear data measurements have been proposed and layout of the experimental hall are underway. In the presentation, roadmap to establish the ADS transmutor and latest design activities for TEF construction will be summarized.

Journal Articles

Recovery of acceleration field gradients of superconducting booster resonators by high pressure water jet rinsing

Kabumoto, Hiroshi; Takeuchi, Suehiro; Ishizaki, Nobuhiro; Yoshida, Takahiro*; Ishiguro, Takayuki*; Yamaguchi, Kazushi*

Proceedings of 6th Annual Meeting of Particle Accelerator Society of Japan (CD-ROM), p.1120 - 1122, 2010/03

The JAEA-Tokai tandem accelerator was built for basic science researches with heavy ions. Its superconducting booster was completed in 1994 for increasing the acceleration energy of ions. The booster consists of 40 superconducting acceleration resonators and 10 cryostats. Every resonator is a coaxial quarter wave resonator (QWR) of which frequency is 129.8MHz, and optimum beam velocity is 10% of the light velocity. When it was built, the acceleration field gradients of superconducting resonators were 5.0MV/m at RF power input of 4W on their average. The performance decrease little by little, and it become 4.0MV/m now. Some of the resonators generate X-rays from a low electric field. A field emission will be occurred from small contaminations accumulated on the surfaces of niobium. We examined the high pressure water jet rinsing (HPWR) to re-recondition the superconducting booster. The HPWR is the technology of removing small contaminations on resonator surfaces, and very effective for the improvement of acceleration field gradients. The acceleration field gradients of 20 on-line resonators were improved from 4.4MV to 5.7MV on their average.

Journal Articles

Recovery of acceleration field gradients of superconducting booster resonators by high pressure water jet rinsing

Kabumoto, Hiroshi; Takeuchi, Suehiro; Ishizaki, Nobuhiro; Yoshida, Takahiro*; Ishiguro, Takayuki*; Yamaguchi, Kazushi*

Dai-22-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.129 - 132, 2010/01

The JAEA-Tokai tandem accelerator was built for basic science researches with heavy ions. Its superconducting booster was completed in 1994 for increasing the acceleration energy of ions. The booster consists of 40 superconducting acceleration resonators and 10 cryostats. Every resonator is a coaxial quarter wave resonator (QWR) of which frequency is 129.8 MHz, and optimum beam velocity is 10% of the light velocity. When it was built, the acceleration field gradients of superconducting resonators were 5.0 MV/m at RF power input of 4 W on their average. The performance decrease little by little, and it become 4.0 MV/m now. Some of the resonators generate X-rays from a low electric field. A field emission will be occurred from small contaminations accumulated on the surfaces of niobium. We examined the high pressure water jet rinsing (HPWR) to re-recondition the superconducting booster. The HPWR is the technology of removing small contaminations on resonator surfaces, and very effective for the improvement of acceleration field gradients. The acceleration field gradients of 20 on-line resonators were improved from 4.4 MV to 5.7 MV on their average.

Oral presentation

Elemental technologies for lead-bismuth spallation target system in J-PARC

Obayashi, Hironari; Yamaguchi, Kazushi; Saito, Shigeru; Sugawara, Takanori; Takei, Hayanori; Sasa, Toshinobu

no journal, , 

Oral presentation

Recent progress in R&D efforts toward construction of J-PARC transmutation experimental facility

Maekawa, Fujio; Sasa, Toshinobu; Takei, Hayanori; Saito, Shigeru; Obayashi, Hironari; Yamaguchi, Kazushi; Wan, T.; Tsujimoto, Kazufumi; Nishihara, Kenji; Sugawara, Takanori; et al.

no journal, , 

As one of experimental facilities of J-PARC (Japan Proton Accelerator Research Complex), we have a plan to construct the Transmutation Experimental Facility (TEF). TEF consists of two facilities: the ADS Target Test Facility (TEF-T) and the Transmutation Physics Experimental Facility (TEF-P). TEF-T equips a liquid lead-bismuth spallation target bombarded by a 400 MeV - 250 kW proton beam in which candidate proton beam window materials are to be irradiated. TEF-P equips a critical/subcritical assembly to investigate physical and dynamic properties of the accelerator-driven system by using a low power (10W) proton beam. Uranium, Plutonium and minor actinide fuels are planned to be loaded into the assembly. Recent progress in R&D efforts toward construction of J-PARC TEF will be presented.

Oral presentation

R&D activities on oxygen sensor and potential control for lead-bismuth eutectic

Sugawara, Takanori; Yamaguchi, Kazushi; Obayashi, Hironari; Saito, Shigeru; Yoshimoto, Hidemitsu; Sasa, Toshinobu

no journal, , 

JAEA is planning to build a Transmutation Experimental Facility (TEF) for R&D on volume reduction and mitigation of harmfulness of high-level radioactive waste by using an Accelerator-Driven System (ADS). In the ADS Target Test Facility (TEF-T) of the TEF, a liquid lead-bismuth eutectic (LBE) target will be irradiated with a high-power (250 kW) proton beam, and irradiation effects on structural materials will be studied. On the other hand, LBE is corrosive, so it is necessary to control oxygen concentration in LBE adequately to protect structural materials from the corrosion. In order to control the oxygen concentration in LBE, it is required to develop an oxygen sensor to measure the oxygen concentration. JAEA tried to fabricate two-types of oxygen sensors (platinum type and bismuth type). As the result, it was confirmed that output voltage of the platinum type sensors was adequate in a wide temperature range.

9 (Records 1-9 displayed on this page)
  • 1