Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of logging data processing tool for lead-bismuth experimental devices

Yamaki, Kenichi*; Kita, Satoshi*; Obayashi, Hironari; Ariyoshi, Gen; Saito, Shigeru; Sasa, Toshinobu

JAEA-Technology 2020-021, 26 Pages, 2021/02

JAEA-Technology-2020-021.pdf:2.34MB

As digitalization of measuring instruments, Programmable Logic Controller is mainly used for controlling large-scale devices, and many test devices are controlled in digital. Together with increase of the data storage capacity, it has become possible to record the measured values over the entire experimental period. By collecting the entire experimental data, it became easy to appropriately record the test environment during the corrosion test of materials and to analyze the changes and transients during continuous operation from various viewpoints. On the other hand, in a long-term test, the large number of measurement data were recorded, which requires long time for data processing and data extraction for analyses. In addition, it is necessary to pay attention to organize the data collected by different data formats. To solve these problems, a processing tool were produced to extract and process the data efficiently from the sequencer installed in the lead-bismuth test device.

Journal Articles

Steady-state and transient experiments in mock-up of J-PARC LBE spallation target system using mock-up loop "IMMORTAL"

Obayashi, Hironari; Yamaki, Kenichi; Kita, Satoshi; Yoshimoto, Hidemitsu; Wan, T.; Saito, Shigeru; Sasa, Toshinobu

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.262 - 274, 2019/08

Construction of an experimental facility using LBE spallation target is under planning in the framework of J-PARC project to understand the compatibility of candidate ADS structural materials under flowing high temperature LBE environment with proton / neutron irradiation. We constructed a mock-up test loop, IMMORTAL to verify the feasibility of a primary cooling system in the target system. Including the layout considering remote maintainability, the same design as the actual JAEA's LBE target is reflected in most devices of IMMORTAL such as an electromagnetic pump (EMP), a heat exchanger and instrumentations. During the integrated tests, the individually developed devices of LBE loop system worked without significant malfunction. Several experimental data to verify the safety analysis model for LBE loop system using RELAP5-3D was acquired by simulation experiment of transient events such as beam over power and decrease of forced cooling.

Journal Articles

Fabrication of hard-coated optical absorbers with microstructured surfaces using etched ion tracks; Toward broadband ultra-low reflectance

Amemiya, Kuniaki*; Koshikawa, Hiroshi; Yamaki, Tetsuya; Maekawa, Yasunari; Shitomi, Hiroshi*; Numata, Takayuki*; Kinoshita, Kenichi*; Tanabe, Minoru*; Fukuda, Daiji*

Nuclear Instruments and Methods in Physics Research B, 356-357, p.154 - 159, 2015/08

 Times Cited Count:6 Percentile:41.19(Instruments & Instrumentation)

Broadband low reflectance materials have various applications in the field of optical energy management; however, materials with ultra-low reflectance (below 0.1%) have been considered as mechanically delicate. We have developed a novel hard-surface optical absorber with microstructured, diamond-like carbon coated ion tracks on CR-39 plastic substrate. The spectral reflectance of the first prototype was below 2% for wavelengths ranging from 400 nm to 1400 nm; moreover, the optical absorber had mechanically hard surface and exhibited temporal durability. Choosing the appropriate design of the surface structure and coating layer is likely to reduce the reflectance to the order of 0.1%. This technique yields easy-to-handle broadband ultra-low reflectance absorbers.

JAEA Reports

2nd power-up test for JRR-2

Kambara, Toyozo; Uno, Hidero; Shoda, Katsuhiko; Hirata, Yutaka; Shoji, Tsutomu; Kohayakawa, Toru; Takayanagi, Hiroshi; Fujimura, Tsutomu; Morita, Morito; Ichihara, Masahiro; et al.

JAERI 1045, 11 Pages, 1963/03

JAERI-1045.pdf:0.72MB

no abstracts in English

Oral presentation

Development of the fracture toughness test technique using the miniature specimen in the hot laboratory

Otsu, Takuyo; Tobita, Toru; Fuse, Masaharu; Yamaki, Kenichi; Terakado, Hiroshi; Nishiyama, Yutaka

no journal, , 

no abstracts in English

Oral presentation

Toward user-friendly thermal radiometers; Microfabrication of novel photo-thermal sensors and broadband ultra-black absorbers

Amemiya, Kuniaki*; Koshikawa, Hiroshi; Yamaki, Tetsuya; Maekawa, Yasunari; Shitomi, Hiroshi*; Kinoshita, Kenichi*; Numata, Takayuki*; Tanabe, Minoru*; Fukuda, Daiji*

no journal, , 

A thermal radiometer absorbs all incoming photons and has a high sensitivity to detect the resulting temperature rise. The big challenges here were insufficient mechanical stability of broadband ultra-black absorbers and low sensitivity of photo-thermal sensors. We developed a robust optical absorber and low-noise photo-thermal sensor by new microfabrication techniques. The optical absorbers had micrometer-sized surface structures of chemically-etched ion tracks on CR-39 plastic and hard carbon coating as an optical absorption layer, therefore, exhibiting a spectral reflectance suppressed to below 1% in the ultra-violet to near infrared range of wavelengths. Importantly, they were never made susceptible to dust blow off as well as to mechanical contact. The photo-thermal detectors were equipped with the bimetal MEMS system, which can sensitively respond to thermally-induced deformation. They were found sensitive enough to reach almost the theoretical limit.

Oral presentation

Design and fabrication of novel broadband near-perfect black absorber having microstructured surface

Amemiya, Kuniaki*; Koshikawa, Hiroshi; Yamaki, Tetsuya; Maekawa, Yasunari; Shitomi, Hiroshi*; Kinoshita, Kenichi*; Numata, Takayuki*; Tanabe, Minoru*; Fukuda, Daiji*

no journal, , 

The novel broadband near-perfect black absorber for an absolute radiometer has been developed. Microstructured surface having high-aspect-ratio conical pores was fabricated by swift heavy ion beam irradiation and following etching process; subsequently, the surface was coated with black layer. Incident light which enters into the surface microstructure experiences multiple reflections which enhance optical absorption; therefore, the net reflectance decreases much less than 1% with sufficient pit aspect ratio and absorption layer thickness, which can be designed by finite differential time domain (FDTD) method calculation. Furthermore, a prototype of the novel black absorber also exhibited good mechanical durability. This newly developed black material is also expected to have potential application in various fields of optical energy management such as stray light elimination.

Oral presentation

250 kW LBE spallation target for J-PARC Transmutation Experimental Facility

Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Wan, T.; Sugawara, Takanori; Kita, Satoshi*; Yamaki, Kenichi*; Yoshimoto, Hidemitsu*

no journal, , 

JAEA proposes the Partitioning and Transmutation Technology to reduce the environmental impact caused from high-level radioactive waste using Accelerator-driven system (ADS) which adopts lead-bismuth eutectic alloy (LBE) as a coolant for subcritical core and spallation target. To realize ADS, JAEA plans to construct the Transmutation Experimental Facility (TEF) within the framework of J-PARC project. By using TEF in J-PARC, it is planned to solve technical issues for safe application of LBE by completing the data to design LBE-cooled ADS. The 250kW LBE spallation target will be located in TEF facility to prepare material irradiation database by both proton and neutron injection in the temperature range for typical LBE-cooled ADS. Detailed design and optimization of the target as a reference target of TEF-T and various elemental technologies are investigated. The large scale LBE loops for mock up the spallation target and material corrosion studies are also manufactured and ready for various experiments. The latest status of 250kW LBE spallation target design works will be described in the presentation.

Oral presentation

J-PARC LBE spallation target for ADS development

Sasa, Toshinobu; Saito, Shigeru; Obayashi, Hironari; Ariyoshi, Gen; Wan, T.*; Okubo, Nariaki; Ohdaira, Naoya*; Yamaki, Kenichi*; Kita, Satoshi*; Yoshimoto, Hidemitsu*

no journal, , 

Japan Atomic Energy Agency (JAEA) proposes to reduce the minor actinides by Partitioning and Transmutation Technology using Accelerator-driven system (ADS). To realize ADS, JAEA plans to locate Lead-Bismuth Eutectic alloy (LBE) spallation target in J-PARC. LBE spallation target will be used to solve technical issues for ADS design by preparing irradiation database. The 400 MeV - 250 kW proton beam can be used for ADS studies. The spallation target is optimized by thermal-hydraulic analysis and structural analysis to increase proton/neutron irradiation of ADS materials by sharply focused proton beam injection. The studies for elemental technologies such as a fully-remote target exchange procedure and freeze-sealed drain valve system are also performed and integrated into the design of LBE target. The latest design of the J-PARC LBE spallation target system will be presented.

9 (Records 1-9 displayed on this page)
  • 1