Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakanishi, Yohei*; Shibata, Motoki*; Sawada, Satoshi*; Kondo, Hiroaki*; Motokawa, Ryuhei; Kumada, Takayuki; Yamamoto, Katsuhiro*; Mita, Kazuki*; Miyazaki, Tsukasa*; Takenaka, Mikihito*
Polymer, 306, p.127209_1 - 127209_7, 2024/06
Times Cited Count:1 Percentile:61.21(Polymer Science)Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.
Journal of Neutron Research, 26(2-3), p.59 - 67, 2024/05
The linac and 3 GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also been continuing study to achieve up to 2 MW beam in J-PARC RCS.
Shibata, Motoki*; Nakanishi, Yohei*; Abe, Jun*; Arima, Hiroshi*; Iwase, Hiroki*; Shibayama, Mitsuhiro*; Motokawa, Ryuhei; Kumada, Takayuki; Takata, Shinichi; Yamamoto, Katsuhiro*; et al.
Polymer Journal, 55(11), p.1165 - 1170, 2023/11
Times Cited Count:2 Percentile:29.92(Polymer Science)Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.
Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.270 - 273, 2023/10
The 3-GeV rapid-cycling synchrotron at the Japan Pro-ton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also continued study to achieve more than 2 MW beam in J-PARC RCS.
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Nakanishi, Yohei*; Shibata, Motoki*; Takenaka, Mikihito*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; Miyazaki, Tsukasa*
Soft Matter, 19(11), p.2082 - 2089, 2023/03
Times Cited Count:3 Percentile:62.54(Chemistry, Physical)Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Yoshimoto, Masahiro; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Hatakeyama, Shuichiro; Moriya, Katsuhiro; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1 - 5, 2023/01
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Nakanishi, Yohei*; Takenaka, Mikihito*; Shibata, Motoki*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; et al.
Langmuir, 38(41), p.12457 - 12465, 2022/10
Times Cited Count:2 Percentile:17.05(Chemistry, Multidisciplinary)Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:7 Percentile:80.72(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki
EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07
The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.6310 variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.0810. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.
Miyazaki, Tsukasa*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Aoki, Hiroyuki; Yamada, Norifumi*; Miyata, Noboru*
Langmuir, 36(49), p.15181 - 15188, 2020/12
Times Cited Count:8 Percentile:34.89(Chemistry, Multidisciplinary)Miyazaki, Tsukasa*; Miyata, Noboru*; Yoshida, Tessei*; Arima, Hiroshi*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; et al.
Langmuir, 36(13), p.3415 - 3424, 2020/04
Times Cited Count:17 Percentile:61.42(Chemistry, Multidisciplinary)Miyazaki, Tsukasa*; Miyata, Noboru*; Asada, Mitsunori*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; Tanaka, Keiji*
Langmuir, 35(34), p.11099 - 11107, 2019/08
Times Cited Count:25 Percentile:68.38(Chemistry, Multidisciplinary)Tashiro, Koji*; Kusaka, Katsuhiro*; Hosoya, Takaaki*; Ohara, Takashi; Hanesaka, Makoto*; Yoshizawa, Yoshinori*; Yamamoto, Hiroko*; Niimura, Nobuo*; Tanaka, Ichiro*; Kurihara, Kazuo*; et al.
Macromolecules, 51(11), p.3911 - 3922, 2018/06
Times Cited Count:6 Percentile:19.69(Polymer Science)Tashiro, Koji*; Hanesaka, Makoto*; Yamamoto, Hiroko*; Wasanasuk, K.*; Jayaratri, P.*; Yoshizawa, Yoshinori*; Tanaka, Ichiro*; Niimura, Nobuo*; Kusaka, Katsuhiro*; Hosoya, Takaaki*; et al.
Kobunshi Rombunshu, 71(11), p.508 - 526, 2014/11
Times Cited Count:6 Percentile:21.20(Polymer Science)The crystal structure analysis of various polymer substances has been reviewed on the basis of wide-angle high-energy X-ray and neutron diffraction data. The progress in structural analytical techniques of polymer crystals have been reviewed at first. The structural models proposed so far were reinvestigated and new models have been proposed for various kinds of polymer crystals including polyethylene, poly(vinyl alcohol), poly(lactic acid) and its stereocomplex etc. The hydrogen atomic positions were also clarified by the quantitative analysis of wide-angle neutron diffraction data, from which the physical properties of polymer crystals have been evaluated theoretically. The bonded electron density distribution has been estimated for a polydiacetylene single crystal on the basis of the so-called X-N method or by the combination of structural information derived from X-ray and neutron diffraction data analysis. Some comments have been added about future developments in the field of structure-property relationship determination.
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.
JAEA-Review 2013-050, 114 Pages, 2014/02
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.
JAEA-Review 2013-018, 169 Pages, 2013/09
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.
JAEA-Review 2012-028, 31 Pages, 2012/08
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.
JAEA-Review 2012-020, 178 Pages, 2012/06
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Saegusa, Hiromitsu; Mizuno, Takashi; Sato, Toshinori; Ogata, Nobuhisa; et al.
JAEA-Review 2011-027, 30 Pages, 2011/08
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.
JAEA-Review 2011-007, 145 Pages, 2011/03
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.