Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 36

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Analyses of hierarchical structures in SBR rubber by using contrast-variation SANS; Effects of a silane coupling agent

Nakanishi, Yohei*; Shibata, Motoki*; Sawada, Satoshi*; Kondo, Hiroaki*; Motokawa, Ryuhei; Kumada, Takayuki; Yamamoto, Katsuhiro*; Mita, Kazuki*; Miyazaki, Tsukasa*; Takenaka, Mikihito*

Polymer, 306, p.127209_1 - 127209_7, 2024/06

 Times Cited Count:1 Percentile:61.21(Polymer Science)

Journal Articles

J-PARC Linac and RCS; Operational status and upgrade plan to 2 MW

Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.

Journal of Neutron Research, 26(2-3), p.59 - 67, 2024/05

The linac and 3 GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also been continuing study to achieve up to 2 MW beam in J-PARC RCS.

Journal Articles

Structural changes of polystyrene particles in subcritical and supercritical water revealed by in situ small-angle neutron scattering

Shibata, Motoki*; Nakanishi, Yohei*; Abe, Jun*; Arima, Hiroshi*; Iwase, Hiroki*; Shibayama, Mitsuhiro*; Motokawa, Ryuhei; Kumada, Takayuki; Takata, Shinichi; Yamamoto, Katsuhiro*; et al.

Polymer Journal, 55(11), p.1165 - 1170, 2023/11

 Times Cited Count:2 Percentile:29.92(Polymer Science)

Journal Articles

Beyond 1-MW scenario in J-PARC rapid-cycling synchrotron

Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.

Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.270 - 273, 2023/10

The 3-GeV rapid-cycling synchrotron at the Japan Pro-ton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also continued study to achieve more than 2 MW beam in J-PARC RCS.

Journal Articles

Neutron reflectivity study on the nanostructure of PMMA chains near substrate interfaces based on contrast variation accompanied with small molecule sorption

Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Nakanishi, Yohei*; Shibata, Motoki*; Takenaka, Mikihito*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; Miyazaki, Tsukasa*

Soft Matter, 19(11), p.2082 - 2089, 2023/03

 Times Cited Count:3 Percentile:62.54(Chemistry, Physical)

Journal Articles

Achievement of low beam loss at high-intensity operation of J-PARC 3 GeV RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Yoshimoto, Masahiro; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Hatakeyama, Shuichiro; Moriya, Katsuhiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1 - 5, 2023/01

Journal Articles

Neutron reflectivity study on the suppression of interfacial water accumulation between a polypropylene thin film and Si substrate using a silane-coupling agent

Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Nakanishi, Yohei*; Takenaka, Mikihito*; Shibata, Motoki*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; et al.

Langmuir, 38(41), p.12457 - 12465, 2022/10

 Times Cited Count:2 Percentile:17.05(Chemistry, Multidisciplinary)

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:7 Percentile:80.72(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

Journal Articles

Neutron reflectivity on the mobile surface and immobile interfacial layers in the poly(vinyl acetate) adsorption layer on a Si substrate with deuterated toluene vapor-induced swelling

Miyazaki, Tsukasa*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Aoki, Hiroyuki; Yamada, Norifumi*; Miyata, Noboru*

Langmuir, 36(49), p.15181 - 15188, 2020/12

 Times Cited Count:8 Percentile:34.89(Chemistry, Multidisciplinary)

Journal Articles

Detailed structural study on the poly(vinyl alcohol) adsorption layers on a Si substrate with solvent vapor-induced swelling

Miyazaki, Tsukasa*; Miyata, Noboru*; Yoshida, Tessei*; Arima, Hiroshi*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; et al.

Langmuir, 36(13), p.3415 - 3424, 2020/04

 Times Cited Count:17 Percentile:61.42(Chemistry, Multidisciplinary)

Journal Articles

Elucidation of a heterogeneous layered structure in the thickness direction of poly(vinyl alcohol) films with solvent vapor-induced swelling

Miyazaki, Tsukasa*; Miyata, Noboru*; Asada, Mitsunori*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; Tanaka, Keiji*

Langmuir, 35(34), p.11099 - 11107, 2019/08

 Times Cited Count:25 Percentile:68.38(Chemistry, Multidisciplinary)

Journal Articles

Structure analysis and derivation of deformed electron density distribution of polydiacetylene giant single crystal by the combination of X-ray and neutron diffraction data

Tashiro, Koji*; Kusaka, Katsuhiro*; Hosoya, Takaaki*; Ohara, Takashi; Hanesaka, Makoto*; Yoshizawa, Yoshinori*; Yamamoto, Hiroko*; Niimura, Nobuo*; Tanaka, Ichiro*; Kurihara, Kazuo*; et al.

Macromolecules, 51(11), p.3911 - 3922, 2018/06

 Times Cited Count:6 Percentile:19.69(Polymer Science)

Journal Articles

Accurate structure analyses of polymer crystals on the basis of wide-angle X-ray and neutron diffractions

Tashiro, Koji*; Hanesaka, Makoto*; Yamamoto, Hiroko*; Wasanasuk, K.*; Jayaratri, P.*; Yoshizawa, Yoshinori*; Tanaka, Ichiro*; Niimura, Nobuo*; Kusaka, Katsuhiro*; Hosoya, Takaaki*; et al.

Kobunshi Rombunshu, 71(11), p.508 - 526, 2014/11

 Times Cited Count:6 Percentile:21.20(Polymer Science)

The crystal structure analysis of various polymer substances has been reviewed on the basis of wide-angle high-energy X-ray and neutron diffraction data. The progress in structural analytical techniques of polymer crystals have been reviewed at first. The structural models proposed so far were reinvestigated and new models have been proposed for various kinds of polymer crystals including polyethylene, poly(vinyl alcohol), poly(lactic acid) and its stereocomplex etc. The hydrogen atomic positions were also clarified by the quantitative analysis of wide-angle neutron diffraction data, from which the physical properties of polymer crystals have been evaluated theoretically. The bonded electron density distribution has been estimated for a polydiacetylene single crystal on the basis of the so-called X-N method or by the combination of structural information derived from X-ray and neutron diffraction data analysis. Some comments have been added about future developments in the field of structure-property relationship determination.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Saegusa, Hiromitsu; Mizuno, Takashi; Sato, Toshinori; Ogata, Nobuhisa; et al.

JAEA-Review 2011-027, 30 Pages, 2011/08

JAEA-Review-2011-027.pdf:4.18MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

36 (Records 1-20 displayed on this page)