Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kimura, Koji*; Tsutsui, Satoshi*; Yamamoto, Yuta*; Nakano, Akitoshi*; Kawamura, Keisuke*; Kajimoto, Ryoichi; Kamazawa, Kazuya*; Martin, A.*; Webber, K. G.*; Kakimoto, Kenichi*; et al.
Physical Review B, 110(13), p.134314_1 - 134314_10, 2024/10
Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Miyakoshi, Ryosuke*; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Hara, Keigo*; et al.
Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.765 - 769, 2024/10
no abstracts in English
Tamura, Fumihiko; Sugiyama, Yasuyuki*; Okita, Hidefumi; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.
Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.774 - 776, 2024/10
The 3GeV RCS of J-PARC accelerates proton beams with a maximum beam intensity of 8e13 ppp, utilizing the features of magnetic alloy (MA) cavities. The beam is extracted in a single turn by kicker magnets, and immediately after the beam is extracted, a short voltage jump occurs in the cavity. This is due to a delay in the voltage control feedback, which takes a certain amount of time to respond to the step-like decrease of beam current upon single-turn extraction. In a wideband (Q=2) MA cavity, this response delay is observed as a voltage jump. This voltage jump can cause damage to the cavity system if the voltage at the time of extraction is high. Therefore, we prepared a logic to suppress the output synchronously with the beam extraction as a function of the LLRF control system. The details of the function and test results are reported.
Yamamoto, Kei; Maekawa, Sadamichi*
Annalen der Physik, 536(5), p.2300395_1 - 2300395_11, 2024/05
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Makiuchi, Takahiko*; Hioki, Tomosato*; Shimizu, Hiroki*; Hoshi, Kojiro*; Elyasi, M.*; Yamamoto, Kei; Yokoi, Naoto*; Serga, A. A.*; Hillebrands, B.*; Bauer, G. E. W.*; et al.
Nature Materials, 23(5), p.627 - 632, 2024/05
Times Cited Count:6 Percentile:95.85(Chemistry, Physical)Elyasi, M.*; Yamamoto, Kei; Hioki, Tomosato*; Makiuchi, Takahiko*; Shimizu, Hiroki*; Saito, Eiji*; Bauer, G. E. W.*
Physical Review B, 109(18), p.L180402_1 - L180402_7, 2024/05
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Yamamoto, Kei
JPSJ News and Comments (Internet), 21, p.07_1 - 07_2, 2024/04
Amekura, Hiroshi*; Chettah, A.*; Narumi, Kazumasa*; Chiba, Atsuya*; Hirano, Yoshimi*; Yamada, Keisuke*; Yamamoto, Shunya*; Leino, A. A.*; Djurabekova, F.*; Nordlund, K.*; et al.
Nature Communications (Internet), 15, p.1786_1 - 1786_10, 2024/02
Times Cited Count:1 Percentile:70.85(Multidisciplinary Sciences)Injecting high-energy heavy ions in the electronic stopping regime into solids can create cylindrical damage zones called latent ion tracks. Although these tracks form in many materials, none have ever been observed in diamond, even when irradiated with high-energy GeV uranium ions. Here we report the first observation of ion track formation in diamond irradiated with 2-9 MeV C fullerene ions. Depending on the ion energy, the mean track length (diameter) changed from 17 (3.2) nm to 52 (7.1) nm. High resolution scanning transmission electron microscopy (HR-STEM) indicated the amorphization in the tracks, in which -bonding signal from graphite was detected by the electron energy loss spectroscopy (EELS).
Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Saha, P. K.; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; et al.
Journal of Physics; Conference Series, 2687(7), p.072005_1 - 072005_7, 2024/01
Times Cited Count:0Longitudinal phase space tomography is an effective measurement tool for acquiring the longitudinal phase space distribution. For the J-PARC synchrotrons, tomography, which can take into account the beam dynamics such as longitudinal space charge effect and nonlinearity, is desired, as the beam power increases. In this study, for the J-PARC synchrotron, the CERN's tomography, which employs the hybrid algorithm that can consider the beam dynamics for reconstruction, is introduced and benchmarked. The benchmark results show that the CERN's tomography has the ability to measure the longitudinal phase space distribution accurately, in the high-power beam operation at the J-PARC synchrotrons.
Lyons, T. P.*; Puebla, J.*; Yamamoto, Kei; Deacon, R. S.*; Hwang, Y.*; Ishibashi, Koji*; Maekawa, Sadamichi*; Otani, Yoshichika*
Physical Review Letters, 131(19), p.196701_1 - 196701_6, 2023/11
Times Cited Count:8 Percentile:87.40(Physics, Multidisciplinary)Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11
The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.
Liao, L.*; Puebla, J.*; Yamamoto, Kei; Kim, J.*; Maekawa, Sadamichi*; Hwang, Y.*; Ba, Y.*; Otani, Yoshichika*
Physical Review Letters, 131(17), p.176701_1 - 176701_6, 2023/10
Times Cited Count:6 Percentile:80.90(Physics, Multidisciplinary)Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Okita, Hidefumi; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.
Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.305 - 311, 2023/10
The application of MA cores to the accelerating rf cavities in high intensity proton synchrotrons was pioneered for the J-PARC synchrotrons. The MA cavities can generate high accelerating voltages. The wideband frequency response of the MA cavity enables the frequency sweep without the tuning loop. The dual harmonic operation is indispensable for the longitudinal bunch shaping to alleviate the space charge effects in the RCS. These advantages of the MA cavity are also disadvantages when looking at them from a different perspective. Since the wake voltage consists of several harmonics, the beam loading compensation must be multiharmonic. The operation of tubes in the final stage amplifier is not trivial when accelerating very high intensity beams; the output current is high and the anode voltage is also multiharmonic. We summarize our effort against these issues in the operation of the RCS and MR for more than 10 years.
Yamamoto, Masanobu; Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*
Progress of Theoretical and Experimental Physics (Internet), 2023(7), p.073G01_1 - 073G01_16, 2023/07
Times Cited Count:1 Percentile:0.00(Physics, Multidisciplinary)The Japan Proton Accelerator Research Complex (J-PARC) Rapid Cycling Synchrotron (RCS) employs Magnetic Alloy (MA) loaded cavities. We realize multi-harmonic rf driving and beam loading compensation owing to the broadband characteristics of the MA. The currently installed cavity is the conventional type one which is designed to be driven by tube amplifiers in a push-pull operation. The push-pull operation has some advantages, i.e., suppressing a higher harmonic distortion without the beam acceleration and shortening the cavity length. However, a disadvantage arises at the high intensity beam acceleration where the multi-harmonic rf driving causes a severe imbalance of the anode voltage swing and restricts the tube operation. Although we have achieved an acceleration for the design beam power of 1 MW, the imbalance becomes an issue to further increase the beam power. We have developed a single-ended MA cavity to avoid such difficulty. The cavity has no tube imbalance intrinsically and it is found that the power consumption to drive the cavity can be reduced compared with the conventional one.
Yamamoto, Seishiro*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Imaizumi, Yuya; Matsuba, Kenichi; Kamiyama, Kenji
Konsoryu, 37(1), p.79 - 85, 2023/03
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Nakanishi, Yohei*; Shibata, Motoki*; Takenaka, Mikihito*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; Miyazaki, Tsukasa*
Soft Matter, 19(11), p.2082 - 2089, 2023/03
Times Cited Count:2 Percentile:54.76(Chemistry, Physical)Yamamoto, Naoki*; Matsumura, Daiju; Hagihara, Yuto*; Tanaka, Kei*; Hasegawa, Yuta*; Ishii, Kenji*; Tanaka, Hirohisa*
Journal of Power Sources, 557, p.232508_1 - 232508_10, 2023/02
Times Cited Count:7 Percentile:43.81(Chemistry, Physical)Chen, J.*; Yamamoto, Kei; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Ma, J.*; Liu, S.*; Gao, P.*; et al.
Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02
Times Cited Count:6 Percentile:80.55(Physics, Applied)Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.
Journal of Physics; Conference Series, 2420, p.012092_1 - 012092_6, 2023/01
A power upgrade of existing 8 kW solid-state driver amplifier is required for the acceleration of high intensity proton beams on the J-PARC 3 GeV rapid cycling synchrotron. The development of a 25 kW amplifier with gallium nitride (GaN) HEMTs, based on 6.4 kW modules is on going. The combiner is a key component to achieve such a high output power over the wide bandwidth required for multi-harmonic rf operation. This paper presents preliminary design of the combiner. The circuit simulation setup and results, including the realistic magnetic core characteristics and frequency response of the cable are reported.
Lee, O.*; Yamamoto, Kei; Umeda, Maki; Zollitsch, C. W.*; Elyasi, M.*; Kikkawa, Takashi*; Saito, Eiji; Bauer, G. E. W.*; Kurebayashi, Hidekazu*
Physical Review Letters, 130(4), p.046703_1 - 046703_6, 2023/01
Times Cited Count:13 Percentile:93.36(Physics, Multidisciplinary)