Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kokubun, Yuji; Hosomi, Kenji; Seya, Natsumi; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Hasegawa, Ryo; Kubota, Tomohiro; Hirao, Moe; Iizawa, Shogo; et al.
JAEA-Review 2024-053, 116 Pages, 2025/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution prevention act, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2023. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.
JAEA-Review 2023-052, 118 Pages, 2024/03
Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.
Hagihara, Koji*; Mayama, Tsuyoshi*; Yamasaki, Michiaki*; Harjo, S.; Tokunaga, Toko*; Yamamoto, Kazuki*; Sugita, Mika*; Aoyama, Kairi*; Gong, W.; Nishimoto, Soya*
International Journal of Plasticity, 173, p.103865_1 - 103865_21, 2024/02
Times Cited Count:12 Percentile:98.44(Engineering, Mechanical)Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Yoshida, Tadayoshi; Sato, Tetsuro*; Seki, Akiyuki; Yamamoto, Hideaki*; et al.
Journal of Environmental Radioactivity, 210, p.105878_1 - 105878_12, 2019/12
Times Cited Count:40 Percentile:81.21(Environmental Sciences)Mikami, Satoshi; Matsuda, Norihiro; Ando, Masaki; Kinase, Sakae; Kitano, Mitsuaki; Kawase, Keiichi; Matsumoto, Shinichiro; Yamamoto, Hideaki; Saito, Kimiaki
Radioisotopes, 64(9), p.589 - 607, 2015/09
This article presents the features of regional distributions and temporal changes in air dose rate and radionuclide deposition densities in Fukushima on the basis of analyses on large-scale environmental monitoring results using diverse methods. The continuity of decontamination effects is discussed according to repeated monitoring data after the decontamination model project. Further, some examples are shown on the projection of air dose rates together with the ecological half lives for different land uses.
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.
JAEA-Review 2013-050, 114 Pages, 2014/02
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.
JAEA-Review 2013-018, 169 Pages, 2013/09
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Takano, Nao*; Takahashi, Yuko*; Yamamoto, Mitsuru*; Teranishi, Mika*; Yamaguchi, Hiroko*; Sakamoto, Ayako; Hase, Yoshihiro; Fujisawa, Hiroko*; Wu, J.*; Matsumoto, Takashi*; et al.
Journal of Radiation Research, 54(4), p.637 - 648, 2013/07
Times Cited Count:14 Percentile:50.54(Biology)Yamamoto, Nobuyuki; Iwano, Keita*; Namikawa, Tadashi*; Morikawa, Seiji*; Seno, Shoji*; Tabei, Kazuto*; Toida, Masaru*; Yokota, Hideharu
JAEA-Research 2013-003, 252 Pages, 2013/06
This study reconsiders rock's mechanical and hydrological parameters based on additional data given in this year, and conducts the mechanical-hydrological analysis using the Micromechanics-Based Continuum (MBC) model which can consider the behavior of fracture. The acquired analysis results are compared with actual test data such as drift convergence and hydraulic pressure around the drift. Then, following knowledge is obtained.
Kawamoto, Koji; Kuboshima, Koji; Ishibashi, Masayuki; Tsuruta, Tadahiko; Sasao, Eiji; Ikeda, Koki; Mikake, Shinichiro; Hara, Ikuo; Yamamoto, Masaru
JAEA-Data/Code 2012-025, 32 Pages, 2013/01
This document presents the data of geological investigations in the shafts and research galleries from the depth of 300m to 500m of the MIU from the 2008 fiscal year to the 2011 fiscal year. In the shafts and research galleries of the MIU, although the Cretaceous Toki granite is distributed, pegmatite, aplite and lampropyre dike are distributed partially.
Nakayama, Masashi; Amano, Kenji; Tokiwa, Tetsuya; Yamamoto, Yoichi; Oyama, Takuya; Amano, Yuki; Murakami, Hiroaki; Inagaki, Daisuke; Tsusaka, Kimikazu; Kondo, Keiji; et al.
JAEA-Review 2012-035, 63 Pages, 2012/09
The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase"(research in the underground facilities). This report summarizes the results of the investigations for the 2011 fiscal year (2011/2012). The investigations, which are composed of "Geoscientific research" and "R&D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2011 Fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.
JAEA-Review 2012-028, 31 Pages, 2012/08
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.
Kawamoto, Koji; Kuboshima, Koji; Ishibashi, Masayuki; Tsuruta, Tadahiko; Sasao, Eiji; Ikeda, Koki; Mikake, Shinichiro; Hara, Ikuo; Yamamoto, Masaru
JAEA-Data/Code 2012-009, 47 Pages, 2012/07
This document presents the data of geological investigations in the shafts and research galleries to the depth of 300 m of the MIU from the 2004 fiscal year to the 2008 fiscal year. In the shafts and research galleries of the MIU, the Cretaceous Toki granite is unconformably overlain by the generally flat lying Miocene Mizunami Group (younging upwards from the Toki Lignite-bearing Formation to the Hongo and Akeyo Formations) with a depth of about 166 m to 168 m.
Ueno, Takashi; Tokuyasu, Shingo; Kawamoto, Koji; Kuboshima, Koji; Ishibashi, Masayuki; Tsuruta, Tadahiko; Sasao, Eiji; Ikeda, Koki; Mikake, Shinichiro; Hara, Ikuo; et al.
JAEA-Data/Code 2012-008, 136 Pages, 2012/07
This report compiles data of results from borehole investigations which has been carried out research gallery of Mizunami Underground Research Laboratory (MIU) in the fiscal year from 2005 to 2011. These data include results of core observation, geophysical logging, and so on.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.
JAEA-Review 2012-020, 178 Pages, 2012/06
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.
Takano, Nao*; Takahashi, Yuko*; Yamamoto, Mitsuru*; Teranishi, Mika*; Hase, Yoshihiro; Sakamoto, Ayako; Tanaka, Atsushi; Hidema, Jun*
JAEA-Review 2011-043, JAEA Takasaki Annual Report 2010, P. 104, 2012/01
Kawachi, Tetsuya; Hasegawa, Noboru; Nishikino, Masaharu; Ishino, Masahiko; Imazono, Takashi; Oba, Toshiyuki; Kaihori, Takeshi; Kishimoto, Maki; Ochi, Yoshihiro; Tanaka, Momoko; et al.
X-Ray Lasers 2010; Springer Proceedings in Physics, Vol.136, p.15 - 24, 2011/12
This paper reviews recent improvement in the source development of laser-driven X-ray lasers and the applications in the research fields of material science, laser processing, X-ray imaging, and radiation damage in biological cells. In the application for material science, we have firstly observed temporal correlation between the domain structures of ferro-electric substance under the Curie temperature. In the laser processing, new X-ray laser interferometer reveals us the nano-scale surface distortion of substance pumped by a femto-second optical pulse. In the X-ray diffraction image, we have taken several static images of micro-structure of samples: now we are trying to extend the objective to nano-scale dynamics using pump and probe method. In the radiation damage of biological cells, we observed double strand break in DNA using X-ray laser exposure; this results are compared with the case using incoherent several KeV X-ray exposure.
Kubo, Makoto*; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru
Kisoko, 39(9), p.82 - 85, 2011/09
Japan Atomic Energy Agency (JAEA)'s task is to provide the scientific and technical basis for safe geological disposal of high-level radioactive waste. This involves researches on development and improvement of techniques for characterization of the deep geological environment and a wide range of engineering for deep underground application in crystalline rock at "Mizunami Underground Research Laboratory". This report describes the summary of construction.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Saegusa, Hiromitsu; Mizuno, Takashi; Sato, Toshinori; Ogata, Nobuhisa; et al.
JAEA-Review 2011-027, 30 Pages, 2011/08
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc.
Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.
JAEA-Review 2011-007, 145 Pages, 2011/03
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.