Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tamura, Yukiko*; Arakawa, Masato*; Takenaka, Mikihito*; Nakanishi, Yohei*; Fujinami, So*; Shibata, Motoki*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Yamada, Masako*; Seto, Hideki*; et al.
Polymer, 333, p.128662_1 - 128662_8, 2025/08
Times Cited Count:0Taguchi, Miki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Ozawa, Satoru*; Hasegawa, Ryuichi*; Morimitsu, Yuma*; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Polymer Journal, 7 Pages, 2025/03
Times Cited Count:0 Percentile:0.00(Polymer Science)Yamamoto, Katsuhiro*; Imai, Tatsuya*; Kawai, Atsuki*; Ito, Eri*; Miyazaki, Tsukasa*; Miyata, Noboru*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 16(48), p.66782 - 66791, 2024/11
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Miyazaki, Tsukasa*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Takenaka, Mikihito*; Nakanishi, Yohei*; Shibata, Motoki*; Aoki, Hiroyuki; Yamada, Norifumi*; et al.
Colloids and Surfaces A; Physicochemical and Engineering Aspects, 701, p.134928_1 - 134928_8, 2024/11
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Shibata, Motoki*; Nakanishi, Yohei*; Arakawa, Masato*; Takenaka, Mikihito*; Kida, Takumitsu*; Tokumitsu, Katsuhisa*; Tanaka, Ryo*; et al.
Langmuir, 40(30), p.15758 - 15766, 2024/07
Times Cited Count:1 Percentile:0.00(Chemistry, Multidisciplinary)Kawano, Masayuki*; Morimitsu, Yuma*; Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Macromolecules, 57(14), p.6625 - 6633, 2024/07
Times Cited Count:0 Percentile:0.00(Polymer Science)Watanabe, Kazuhiko*; Niki, Kazuaki*; Takahashi, Hiroki; Yamamoto, Noboru*; Yoshimoto, Masahiro; Fukuta, Shimpei*
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.844 - 847, 2023/11
J-PARC Personnel Protection System (PPS) acquires and displays data using by PPS Data System. PPS Data System has been using SCADA software, but it has become difficult to handle increased data due to the limited number of signals. Then, it became necessary to build PPS Data System using different software. Therefore, we decided to construct a new system using EPICS, which has been used in the J-PARC control system. On the other hand, PPS is a system that guarantees the safety of personnel, so it cannot be shut down for long periods of time. In addition, it is the most important safety system and must maintain high reliability and stability, so it would be dangerous to update the entire system in a short period of time. Therefore, we decided to divide the PPS Data System by function and replace it with the new system partially while operating the current system. This allows us to verify the operation of the updated parts and correct any problems without compromising the functionality of the PPS, and to construct a new system with high reliability and stability. This presentation will provide an overview of the new system, the updating process, and the progress.
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Nakanishi, Yohei*; Shibata, Motoki*; Takenaka, Mikihito*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; Miyazaki, Tsukasa*
Soft Matter, 19(11), p.2082 - 2089, 2023/03
Times Cited Count:5 Percentile:50.64(Chemistry, Physical)Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Nakanishi, Yohei*; Takenaka, Mikihito*; Shibata, Motoki*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; et al.
Langmuir, 38(41), p.12457 - 12465, 2022/10
Times Cited Count:2 Percentile:12.88(Chemistry, Multidisciplinary)Yamaguchi, Ko*; Kawaguchi, Daisuke*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Yamamoto, Satoru*; Tanaka, Keiji*
Physical Chemistry Chemical Physics, 24(36), p.21578 - 21582, 2022/09
Times Cited Count:14 Percentile:80.46(Chemistry, Physical)Miyazaki, Tsukasa*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Aoki, Hiroyuki; Yamada, Norifumi*; Miyata, Noboru*
Langmuir, 36(49), p.15181 - 15188, 2020/12
Times Cited Count:11 Percentile:31.71(Chemistry, Multidisciplinary)Miyazaki, Tsukasa*; Miyata, Noboru*; Yoshida, Tessei*; Arima, Hiroshi*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; et al.
Langmuir, 36(13), p.3415 - 3424, 2020/04
Times Cited Count:19 Percentile:59.74(Chemistry, Multidisciplinary)Miyazaki, Tsukasa*; Miyata, Noboru*; Asada, Mitsunori*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; Tanaka, Keiji*
Langmuir, 35(34), p.11099 - 11107, 2019/08
Times Cited Count:27 Percentile:67.06(Chemistry, Multidisciplinary)Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07
After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.
Kikuzawa, Nobuhiro; Niki, Kazuaki*; Yamamoto, Noboru*; Hayashi, Naoki; Adachi, Masatoshi*; Watanabe, Kazuhiko*
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.877 - 880, 2019/07
Interlock system of J-PARC is classified into a personnel protection system (PPS) for human safety and a machine protection system (MPS) for protecting equipment. The PPS of the J-PARC accelerator started from the operation at Linac in 2006 and was completed by the MR operation in 2008. In the next 10 years, some improvements have been made, such as updating video monitoring systems and establishing new interlocks. In addition to describing recent operations including these updatings, this paper reports the current status of inspections and maintenance conducted to maintain and improve reliability.
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Yamamoto, Noboru*; Koseki, Tadashi*
Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2018/08
After the summer shutdown in 2017, the J-PARC restarted user operation in late October. The Materials and Life Science Experimental Facility (MLF) used a spare target and the beam power was limited to 150-200kW. The target was replaced with a new one in the summer shutdown. The beam power was for user operation gradually increased from 300 kW to 500 kW. We have successfully demonstrated 1MW 1hour operation in July 2018. The beam power for the neutrino experimental facility (NU) was 440 kW to 470 kW. The beam was delivered to the hadron experimental facility (HD) from January to February in 2018. The repetition rate of the main ring was shortened from 5.52 to 5.20 seconds, the beam power was increased from 44 to 50 kW. From March 2018, we delivered to the NU at 490 kW stably. In the fiscal year of 2017, the availabilities for the MLF, NU and HD are 93%, 89% and 66%, respectively.
Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio; Koseki, Tadashi; Yamamoto, Noboru; Yoshii, Masahito
Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1038 - 1040, 2018/06
Kamikubota, Norihiko*; Yamada, Shuei*; Sato, Kenichiro*; Kikuzawa, Nobuhiro; Yamamoto, Noboru*; Yoshida, Susumu*; Nemoto, Hiroyuki*
Proceedings of 16th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017) (Internet), p.1470 - 1473, 2018/01
no abstracts in English
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Hori, Yoichiro*; Yamamoto, Noboru*; Koseki, Tadashi*
Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2017/12
After the summer shutdown in 2016, the J-PARC restarted user operation late in October for the neutrino experiments (NU) and early in November for the materials and life science experimental facility (MLF). The beam power for the NU was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility (HD), we started beam tuning in April, but suspended by a failure of the electro static septum. After the treatment, we delivered beam at the power of 37 kW. We delivered beam at 150kW for the MLF. In the fiscal year of 2016, the linac, the 3 GeV synchrotron (RCS) and the MLF were stable and the availability was high at 93%. On the contrary, the main ring has several failures and the availabilities were 77% and 84% for NU and HD, respectively.
Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio*; Koseki, Tadashi*; Yamamoto, Noboru*; Hori, Yoichiro*
Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2290 - 2293, 2017/06
The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). We have taken many hardware upgrades such as front end replacement and energy upgrade at the linac, vacuum improvement, collimator upgrade, etc. The beam powers for the neutrino experiment and hadron experiment from the MR have been steadily increased by tuning and reducing beam losses. The designed 1 MW equivalent beam was demonstrated and user program was performed at 500 kW from the RCS to the neutron and muon experiments. We have experienced many failures and troubles, however, to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.