Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miyazaki, Tsukasa*; Miyata, Noboru*; Yoshida, Tessei*; Arima, Hiroshi*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; et al.
Langmuir, 36(13), p.3415 - 3424, 2020/04
Times Cited Count:12 Percentile:65.41(Chemistry, Multidisciplinary)Miyazaki, Tsukasa*; Miyata, Noboru*; Asada, Mitsunori*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; Tanaka, Keiji*
Langmuir, 35(34), p.11099 - 11107, 2019/08
Times Cited Count:19 Percentile:70.65(Chemistry, Multidisciplinary)Kikuzawa, Nobuhiro; Niki, Kazuaki*; Yamamoto, Noboru*; Hayashi, Naoki; Adachi, Masatoshi*; Watanabe, Kazuhiko*
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.877 - 880, 2019/07
Interlock system of J-PARC is classified into a personnel protection system (PPS) for human safety and a machine protection system (MPS) for protecting equipment. The PPS of the J-PARC accelerator started from the operation at Linac in 2006 and was completed by the MR operation in 2008. In the next 10 years, some improvements have been made, such as updating video monitoring systems and establishing new interlocks. In addition to describing recent operations including these updatings, this paper reports the current status of inspections and maintenance conducted to maintain and improve reliability.
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07
After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Yamamoto, Noboru*; Koseki, Tadashi*
Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2018/08
After the summer shutdown in 2017, the J-PARC restarted user operation in late October. The Materials and Life Science Experimental Facility (MLF) used a spare target and the beam power was limited to 150-200kW. The target was replaced with a new one in the summer shutdown. The beam power was for user operation gradually increased from 300 kW to 500 kW. We have successfully demonstrated 1MW 1hour operation in July 2018. The beam power for the neutrino experimental facility (NU) was 440 kW to 470 kW. The beam was delivered to the hadron experimental facility (HD) from January to February in 2018. The repetition rate of the main ring was shortened from 5.52 to 5.20 seconds, the beam power was increased from 44 to 50 kW. From March 2018, we delivered to the NU at 490 kW stably. In the fiscal year of 2017, the availabilities for the MLF, NU and HD are 93%, 89% and 66%, respectively.
Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio; Koseki, Tadashi; Yamamoto, Noboru; Yoshii, Masahito
Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1038 - 1040, 2018/06
Kamikubota, Norihiko*; Yamada, Shuei*; Sato, Kenichiro*; Kikuzawa, Nobuhiro; Yamamoto, Noboru*; Yoshida, Susumu*; Nemoto, Hiroyuki*
Proceedings of 16th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017) (Internet), p.1470 - 1473, 2018/01
no abstracts in English
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Hori, Yoichiro*; Yamamoto, Noboru*; Koseki, Tadashi*
Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2017/12
After the summer shutdown in 2016, the J-PARC restarted user operation late in October for the neutrino experiments (NU) and early in November for the materials and life science experimental facility (MLF). The beam power for the NU was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility (HD), we started beam tuning in April, but suspended by a failure of the electro static septum. After the treatment, we delivered beam at the power of 37 kW. We delivered beam at 150kW for the MLF. In the fiscal year of 2016, the linac, the 3 GeV synchrotron (RCS) and the MLF were stable and the availability was high at 93%. On the contrary, the main ring has several failures and the availabilities were 77% and 84% for NU and HD, respectively.
Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio*; Koseki, Tadashi*; Yamamoto, Noboru*; Hori, Yoichiro*
Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2290 - 2293, 2017/06
The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). We have taken many hardware upgrades such as front end replacement and energy upgrade at the linac, vacuum improvement, collimator upgrade, etc. The beam powers for the neutrino experiment and hadron experiment from the MR have been steadily increased by tuning and reducing beam losses. The designed 1 MW equivalent beam was demonstrated and user program was performed at 500 kW from the RCS to the neutron and muon experiments. We have experienced many failures and troubles, however, to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.
Kamikubota, Norihiko*; Kikuzawa, Nobuhiro; Tamura, Fumihiko; Yamamoto, Noboru*
Proceedings of 15th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2015) (Internet), p.988 - 991, 2016/01
The beam commissioning of J-PARC started in November, 2006. Since then, the timing system of J-PARC accelerator complex has contributed stable beam operations of three accelerators: a 400-MeV linac (LI), a 3-GeV rapid cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The timing system handles two different repetition cycles: 25 Hz for LI and RCS, and 2.48-6.00 sec. for MR (MR cycle). In addition, the timing system is capable to provide beams to two different experimental facilities in single MR cycle: Material and Life Science Experimental Facility (MLF) and Neutrino Experimental Facility (NU), or, MLF and Hadron Experimental Facility (HD). Recently, a plan to introduce a new facility, Accelerator-Driven Transmutation Experimental Facility (ADS), around 2018, has been discussed. This paper reviews the 8-year operation experience of the J-PARC timing system, followed by a present perspective of upgrade studies.
Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Hatayama, Akiyoshi*; Shibata, Takanori*; Yamamoto, Takashi*; Akino, Noboru; Endo, Yasuei; et al.
Fusion Engineering and Design, 96-97, p.616 - 619, 2015/10
Times Cited Count:10 Percentile:67.18(Nuclear Science & Technology)In JT-60 Super Advanced for the fusion experiment, 22A, 100s negative ions are designed to be extracted from the world largest ion extraction area of 450 mm 1100 mm. One of the key issues for producing such as high current beams is to improve non-uniform production of the negative ions. In order to improve the uniformity of the negative ions, a tent-shaped magnetic filter has newly been developed and tested for JT-60SA negative ion source. The original tent-shaped filter significantly improved the logitudunal uniformity of the extracted H
ion beams. The logitudinal uniform areas within a
10 deviation of the beam intensity were improved from 45% to 70% of the ion extraction area. However, this improvement degrades a horizontal uniformity. For this, the uniform areas was no more than 55% of the total ion extraction area. In order to improve the horizontal uniformity, the filter strength has been reduced from 660 Gasus
cm to 400 Gasus
cm. This reduction improved the horizontal uniform area from 75% to 90% without degrading the logitudinal uniformity. This resulted in the improvement of the uniform area from 45% of the total ion extraction areas. This improvement of the uniform area leads to the production of a 22A H
ion beam from 450 mm
1100 mm with a small amount increase of electron current of 10%. The obtained beam current fulfills the requirement for JT-60SA.
Hasegawa, Noboru; Ochi, Yoshihiro; Kawachi, Tetsuya; Nishikino, Masaharu; Ishino, Masahiko; Imazono, Takashi; Kaihori, Takeshi; Morita, Toshimasa; Sasaki, Akira; Terakawa, Kota*; et al.
X-Ray Lasers 2012; Springer Proceedings in Physics, Vol.147, p.117 - 120, 2014/00
Times Cited Count:0 Percentile:0We have developed the femto-second laser pump and soft X-ray laser probe system in order to observe the dynamical processes of the femto-second laser ablation. By using this system, we succeed to obtain the temporal evolution of the soft X-ray reflectivity from the laser induced Pt surface. The results lead that the rate of decrease in the reflectivity of the probe beam has a non-linear relation with the pump laser fluence.
Nishikino, Masaharu; Hasegawa, Noboru; Ishino, Masahiko; Yamagiwa, Mitsuru; Kawachi, Tetsuya; Minami, Yasuo*; Terakawa, Kota*; Takei, Ryota*; Baba, Motoyoshi*; Suemoto, Toru; et al.
JAEA-Conf 2013-001, p.16 - 19, 2013/09
The dynamics of the femtosecond laser ablation is still not clear at the early stage. Several studies on the time-resolved imaging of femtosecond laser ablation process have been performed on various materials. In this study, we have demonstrated a pump and probe imaging of the metal surface morphology during the femtosecond laser ablation by using the laser-driven plasma induced soft X-ray laser (SXRL) as a probe beam. The pumping laser used for ablation was a Ti:Sapphire laser system based on chirped pulse amplification. The pump beam had a Gaussian profile and the focal spot size on the metal surface was about 70 micron at FWHM. The dependence for the pump laser fluence of the ablation surface expansion and the surface condition (roughness and density gradient) were observed from the soft X-ray interferogram and reflective image, respectively.
Tomita, Takuro*; Yamamoto, Minoru*; Hasegawa, Noboru; Terakawa, Kota*; Minami, Yasuo*; Nishikino, Masaharu; Ishino, Masahiko; Kaihori, Takeshi*; Ochi, Yoshihiro; Kawachi, Tetsuya; et al.
Optics Express (Internet), 20(28), p.29329 - 29337, 2012/12
Times Cited Count:18 Percentile:66.14(Optics)Pump and probe reflective imaging using a soft X-ray laser probe was applied to the observation of the early stage of femtosecond laser ablation process on platinum. In strongly excited area, drastic and fast reflectivity drop was observed. In moderately excited area, the decay of the reflectivity is slower than that in the strongly excited area, and the reflectivity reaches its minimum at t = 160 ps. In weakly excited area, laser-induced reflectivity change was not observed. These results give the critical information about the femtosecond laser ablation.
Hasegawa, Noboru; Yamamoto, Minoru*; Terakawa, Kota*; Nishikino, Masaharu; Ochi, Yoshihiro; Minami, Yasuo*; Tomita, Takuro*; Kawachi, Tetsuya; Suemoto, Toru
AIP Conference Proceedings 1465, p.23 - 27, 2012/07
Times Cited Count:0 Percentile:0.13We have developed a soft X-ray laser (SXRL) interferometer capable of the single-shot imaging of nano-scaled structure dynamics. The depth and lateral resolutions of the interferometer were about 1 nm and 1.8 micron, respectively. We observed the initial stage (50 ps) of the ablation process of the Pt surface pumped by a 70 fs Ti:Sapphire laser pulse. The expansion speed of the Pt surface (34 nm/50 ps) indicated that the nano-bubble structures were formed in the initial stage of the ablation. In order to observe the detailed dynamics, the precision of temporal synchronization between the pump and probe pulses was improved to be 3 ps by adopting a portion of the SXRL and pump beams as the time fiducials.
Achmad, A.*; Hanaoka, Hirofumi*; Yoshioka, Hiroki*; Yamamoto, Shinji*; Tominaga, Hideyuki*; Araki, Takuya*; Ohshima, Yasuhiro; Oriuchi, Noboru*; Endo, Keigo*
Cancer Science, 103(3), p.600 - 605, 2012/03
Times Cited Count:25 Percentile:57.61(Oncology)Ochi, Yoshihiro; Terakawa, Kota*; Hasegawa, Noboru; Yamamoto, Minoru*; Tomita, Takuro*; Kawachi, Tetsuya; Minami, Yasuo*; Nishikino, Masaharu; Imazono, Takashi; Ishino, Masahiko; et al.
Japanese Journal of Applied Physics, 51(1), p.016601_1 - 016601_3, 2012/01
Times Cited Count:10 Percentile:41.8(Physics, Applied)We have developed a soft X-ray laser interferometer based on the double Lloyd's mirror and obtained a single shot interferogram by a 7-ps pulse at the wavelength of 13.9 nm. Micrometer grooves with 5-nm depth were successfully reconstructed from the interferogram. The lateral and depth resolutions were estimated to be 1.5 m and better than 1 nm, respectively. This interferometer will be an attractive diagnostic device for observing transiently changing nano-scale deviations on solid surfaces.
Kawachi, Tetsuya; Hasegawa, Noboru; Nishikino, Masaharu; Ishino, Masahiko; Imazono, Takashi; Oba, Toshiyuki; Kaihori, Takeshi; Kishimoto, Maki; Ochi, Yoshihiro; Tanaka, Momoko; et al.
X-Ray Lasers 2010; Springer Proceedings in Physics, Vol.136, p.15 - 24, 2011/12
This paper reviews recent improvement in the source development of laser-driven X-ray lasers and the applications in the research fields of material science, laser processing, X-ray imaging, and radiation damage in biological cells. In the application for material science, we have firstly observed temporal correlation between the domain structures of ferro-electric substance under the Curie temperature. In the laser processing, new X-ray laser interferometer reveals us the nano-scale surface distortion of substance pumped by a femto-second optical pulse. In the X-ray diffraction image, we have taken several static images of micro-structure of samples: now we are trying to extend the objective to nano-scale dynamics using pump and probe method. In the radiation damage of biological cells, we observed double strand break in DNA using X-ray laser exposure; this results are compared with the case using incoherent several KeV X-ray exposure.
Hasegawa, Noboru; Ochi, Yoshihiro; Kawachi, Tetsuya; Terakawa, Kota*; Tomita, Takuro*; Yamamoto, Minoru; Nishikino, Masaharu; Oba, Toshiyuki; Kaihori, Takeshi; Imazono, Takashi; et al.
X-Ray Lasers 2010; Springer Proceedings in Physics, Vol.136, p.353 - 358, 2011/12
The understanding of the dynamics of the initial process is important for the micro processing and welding by the ultra-short laser pulse. The X-ray laser is suitable for probing this initial process because it has short wavelength (Ni-like Ag, 13.9 nm) and short duration (7 ps). For this investigation, the origin of time of the pumping pulse is quite important. In this study, we used the scintillation plate and the plasma gate technique to realize the spatial and temporal synchronization of the pump and probe pulses. For the spatial alignment, a CsI scintillation plate that was set at the sample position was illuminated by both the X-ray laser pulse, and the fluorescence light were detected by the CCD camera. For the temporal synchronization, we set a thin foil at the sample position. We measured the transmission of the X-ray laser while changing a temporal delay of the pumping laser with respect to the time of X-ray laser pulse to obtain the origin of the irradiation time.
Hasegawa, Noboru; Ochi, Yoshihiro; Kawachi, Tetsuya; Nishikino, Masaharu; Ishino, Masahiko; Imazono, Takashi; Kaihori, Takeshi; Sasaki, Akira; Terakawa, Kota*; Minami, Yasuo*; et al.
Proceedings of SPIE, Vol.8140, p.81400G_1 - 81400G_8, 2011/10
Times Cited Count:3 Percentile:82.82We have developed a soft X-ray laser (SXRL) interferometer capable of the single-shot imaging of nano-scaled structure dynamics. The interferometer consisted of the reflection optics including double Lloyd's mirrors and focusing optics, and the interference fringes are produced on the detector surface. By using this interferometer, the initial stage (50 ps) of the ablation process of the Pt surface pumped by a 70 fs Ti:Sapphire laser pulse was observed. The expansion speed of the surface estimated from the result (34 nm/50 ps) indicated that the nano-bubble structures were formed in the initial stage of the ablation. In order to observe the detailed dynamics, the temporal synchronization between the pump and probe pulses was improved to be 3 ps by adopting a portion of the SXRL and pump beams as the time fiducials, to which the pump and probe timing was adjusted by using the X-ray streak camera.