Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 99

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of ACE file perturbation tool using FRENDY

Tada, Kenichi; Kondo, Ryoichi; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 60(6), p.624 - 631, 2023/06

 Times Cited Count:1 Percentile:56.43(Nuclear Science & Technology)

The sensitivity analysis and the uncertainty quantification have an important role in improving the evaluated nuclear data library. The current computational performance enables us to the sensitivity analysis and uncertainty quantification using the continuous energy Monte Carlo calculation code. The ACE file perturbation tool was developed for these calculations using modules of FRENDY. This tool perturbs the microscopic cross section, the number of neutrons per fission, and the fission spectrum. The uncertainty quantification using the random sampling method is also available if the user prepares the covariance matrix. The uncertainty of the k-effective using the perturbation tool was compared to the current sensitivity analysis codes SCALE/TSUNAMI and MCNP/KSEN. The comparison results indicated that the random sampling method using this tool accurately estimates the uncertainty of k-effective.

Journal Articles

Development of nuclear data processing code FRENDY version 2

Tada, Kenichi; Yamamoto, Akio*; Kunieda, Satoshi; Konno, Chikara; Kondo, Ryoichi; Endo, Tomohiro*; Chiba, Go*; Ono, Michitaka*; Tojo, Masayuki*

Journal of Nuclear Science and Technology, 10 Pages, 2023/00

Nuclear data processing code is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, consideration of the resonance upscattering, ACE file perturbation, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.

Journal Articles

Identification of hydrogen species on Pt/Al$$_{2}$$O$$_{3}$$ by ${it in situ}$ inelastic neutron scattering and their reactivity with ethylene

Yamazoe, Seiji*; Yamamoto, Akira*; Hosokawa, Saburo*; Fukuda, Ryoichi*; Hara, Kenji*; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Tsukuda, Tatsuya*; Yoshida, Hisao*; Tanaka, Tsunehiro*

Catalysis Science & Technology, 11(1), p.116 - 123, 2021/01

 Times Cited Count:5 Percentile:35.71(Chemistry, Physical)

Journal Articles

The $$f$$-electron state of the heavy fermion superconductor NpPd$$_5$$Al$$_2$$ and the isostructural family

Metoki, Naoto; Aczel, A. A.*; Aoki, Dai*; Chi, S.*; Fernandez-Baca, J. A.*; Griveau, J.-C.*; Hagihara, Masato*; Hong, T.*; Haga, Yoshinori; Ikeuchi, Kazuhiko*; et al.

JPS Conference Proceedings (Internet), 30, p.011123_1 - 011123_6, 2020/03

Rare earths (4$$f$$) and actinides (5$$f$$) provide variety of interesting states realized with competing interactions between the increasing number of $$f$$ electrons. Since crystal field splitting of many-body $$f$$ electron system is smaller than the bandwidth, (1) high resolution experiments are needed, (2) essentially no clear spectrum with well defined peaks is expected in itinerant Ce and U compounds, and (3) Np and Pu is strictly regulated. Therefore, systematic research on magnetic excitations by neutron scattering experiments of localized compounds and rare earth iso-structural reference is useful. We describe the $$f$$ electron states of heavy electron compounds NpPd$$_5$$Al$$_2$$ and actinide and rare earth based iso-structural family.

Journal Articles

Implementation of random sampling for ACE-format cross sections using FRENDY and application to uncertainty reduction

Kondo, Ryoichi*; Endo, Tomohiro*; Yamamoto, Akio*; Tada, Kenichi

Proceedings of International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C 2019) (CD-ROM), p.1493 - 1502, 2019/00

A perturbation capability of ACE formatted cross section files was developed using the modules of FRENDY. Uncertainty quantification using MCNP was carried out for the Godiva critical experiment by the RS method. We verified the results of the RS method by comparing with those obtained by the conventional sensitivity analyses. Moreover, uncertainty reduction using the bias factor method with the RS technique was applied to kinetic parameter, i.e., neutron generation time.

Journal Articles

Status and upgrade plan of the cERL gun

Nishimori, Nobuyuki; Nagai, Ryoji; Mori, Michiaki; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Uchiyama, Takashi*; Jin, X.*; Obina, Takashi*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.511 - 515, 2015/09

no abstracts in English

Journal Articles

Development of a high-brightness and high-current electron gun for high-flux $$gamma$$-ray generation

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Uchiyama, Takashi*; Kuriki, Masao*

Nuclear Physics and $$gamma$$-ray sources for Nuclear Security and Nonproliferation, p.321 - 326, 2014/12

Journal Articles

Analysis on effects of transverse electric field in an injector cavity of compact-ERL at KEK

Hwang, J.-G.*; Kim, E.-S.*; Miyajima, Tsukasa*; Honda, Yosuke*; Harada, Kentaro*; Shimada, Miho*; Takai, Ryota*; Kume, Tatsuya*; Nagahashi, Shinya*; Obina, Takashi*; et al.

Nuclear Instruments and Methods in Physics Research A, 753, p.97 - 104, 2014/07

 Times Cited Count:7 Percentile:48.56(Instruments & Instrumentation)

Journal Articles

Generation of a 500-keV electron beam with milliampere current from a photoemission DC gun

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Miyajima, Tsukasa*; Honda, Yosuke*; Uchiyama, Takashi*; Iijima, Hokuto*; Kuriki, Masao*; et al.

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.174 - 178, 2014/06

no abstracts in English

Journal Articles

Experimental investigation of an optimum configuration for a high-voltage photoemission gun for operation at $$geq$$ 500 kV

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Iijima, Hokuto*; Kuriki, Masao*; Kuwahara, Makoto*

Physical Review Special Topics; Accelerators and Beams, 17(5), p.053401_1 - 053401_17, 2014/05

 Times Cited Count:23 Percentile:80.47(Physics, Nuclear)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Progress in a photocathode DC gun at the compact ERL

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Iijima, Hokuto*; Kuriki, Masao*; Kuwahara, Makoto*

Proceedings of 35th International Free-Electron Laser Conference (FEL 2013) (Internet), p.184 - 188, 2013/08

Journal Articles

Development of a 500-kV photoemission DC gun at JAEA

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Miyajima, Tsukasa*; Honda, Yosuke*; Iijima, Hokuto*; Kuriki, Masao*; Kuwahara, Makoto*; et al.

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.255 - 259, 2013/08

no abstracts in English

Journal Articles

Generation of a 500-keV electron beam from a high voltage photoemission gun

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Miyajima, Tsukasa*; Honda, Yosuke*; Iijima, Hokuto*; Kuriki, Masao*; Kuwahara, Makoto*

Applied Physics Letters, 102(23), p.234103_1 - 234103_4, 2013/06

 Times Cited Count:19 Percentile:63.51(Physics, Applied)

Journal Articles

Magnetic Compton scattering studies of magneto-dielectric Ba(Co$$_{0.85}$$Mn$$_{0.15}$$)O$$_{3-delta}$$

Shinoda, Ryoichi*; Ito, Masayoshi*; Sakurai, Yoshiharu*; Yamamoto, Hiroyuki; Hirao, Norie; Baba, Yuji; Iwase, Akihiro*; Matsui, Toshiyuki*

Journal of Applied Physics, 113(17), p.17E307_1 - 17E307_3, 2013/05

 Times Cited Count:9 Percentile:38.1(Physics, Applied)

We revealed that the Ba(Co$$_{0.85}$$Mn$$_{0.15}$$)O$$_{3-delta}$$ (BCMO) ceramic samples exhibited ferromagnetic-dielectric behavior below the magnetic transition temperature of about 35 K. The origin of their magnetic ordering was expected to super-exchange coupling of Co$$^{4+}$$($$d^5$$)-O$$^{2-}$$-Mn$$^{4+}$$ ($$d^3$$) with bonding angle of 180$$^{circ}$$. and/or Mn$$^{4+}$$($$d^3$$)-O$$^{2-}$$-Mn$$^{4+}$$ ($$d^3$$) with bonding angle of 90$$^{circ}$$. The magnetic spin momentum estimated by the magnetic Compton profiles (MCP) of the samples had similar temperature dependence as that determined by the SQUID measurement, which meant that the observed magnetic moments could be ascribed to the spin moment. The shapes of the MCPs of the samples were completely same regardless of the temperature measured. This result indicates that there are no changes of the momentum space distribution of spin density between ferromagnetic and paramagnetic states. So, this magnetic transition is simply caused by a thermal fluctuation of the spin.

Journal Articles

Beam generation from a 500 kV DC photoemission electron gun

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Iijima, Hokuto*; Kuriki, Masao*; Kuwahara, Makoto*

Proceedings of 4th International Particle Accelerator Conference (IPAC '13) (Internet), p.321 - 323, 2013/05

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

Journal Articles

Development of a photoemission DC Gun at JAEA

Nishimori, Nobuyuki; Nagai, Ryoji; Matsuba, Shunya; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Iijima, Hokuto*; Kuriki, Masao*; Kuwahara, Makoto*; et al.

Proceedings of 34th International Free Electron Laser Conference (FEL 2012) (Internet), p.161 - 164, 2012/08

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

99 (Records 1-20 displayed on this page)