Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 57

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron, 2

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.

Journal Articles

Achievement of low beam loss at high-intensity operation of J-PARC 3 GeV RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Yoshimoto, Masahiro; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Hatakeyama, Shuichiro; Moriya, Katsuhiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1 - 5, 2023/01

Journal Articles

Roles of excess minority carrier recombination and chemisorbed O$$_{2}$$ species at SiO$$_{2}$$/Si interfaces in Si dry oxidation; Comparison between p-Si(001) and n-Si(001) surfaces

Tsuda, Yasutaka; Yoshigoe, Akitaka; Ogawa, Shuichi*; Sakamoto, Tetsuya*; Yamamoto, Yoshiki*; Yamamoto, Yukio*; Takakuwa, Yuji*

Journal of Chemical Physics, 157(23), p.234705_1 - 234705_21, 2022/12

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Neutron measurement in the accelerator tunnel of J-PARC Rapid Cycling Synchrotron

Yamamoto, Kazami; Hatakeyama, Shuichiro; Otsu, Satoru*; Matsumoto, Tetsuro*; Yoshimoto, Masahiro

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.494 - 498, 2021/10

J-PARC 3 GeV Rapid Cycling Synchrotron (RCS) provides more than 700 kW proton beam to the neutron target. In order to investigate the influence of the radiation, we intend to evaluate the radiations such as the neutron and gamma-rays, which are generated due to the proton beam loss. If the amount of beam loss is excessive, it becomes difficult to identify the individual neutron and gamma ray. Therefore, we investigated the signal rate of the extraction point of RCS. Preliminary result indicated that we can enough distinguish the neutron and gamma-ray by the liquid scintillator.

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

Journal Articles

Effect of water vapor on re-saturation process in EBS performance of re-saturation process by Thermo-Hydro-Mechanical coupled analysis

Sato, Shin*; Ono, Hirokazu; Tanai, Kenji; Yamamoto, Shuichi*; Fukaya, Masaaki*; Shimura, Tomoyuki*; Niunoya, Sumio*

Jiban Kogaku Janaru (Internet), 15(3), p.529 - 541, 2020/09

no abstracts in English

Journal Articles

High voltage dependence measurement of beam loss monitor in J-PARC RCS

Hatakeyama, Shuichiro; Yoshimoto, Masahiro; Yamamoto, Kazami

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.475 - 477, 2020/09

J-PARC accelerators consist of linear accelerator (LINAC), 3GeV synchrotron (RCS) and main ring synchrotron (MR). RCS is an important facility delivering the beam to Materials and Life Science Experimental Facility (MLF) and MR. In RCS 87 proportional counter type beam loss monitors (PBLM) are installed and it is protecting the equipments on the beam line from the radioactivation by alerting the machine protection system (MPS) when the integrated value of the beam loss in an accelerating cycle gets over the limit. In this presentation, -1000V to -2000V high voltage are adapted to PBLMs and output was measured. In result, some PBLMs where the beam loss is large enough, there are saturations around -1400V to -2000V about the peak value of beam loss but no saturation about integral value of beam loss. Also it is considered the new HV system which solves some issues of the on-going HV system.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Yoshimoto, Masahiro; et al.

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.209 - 213, 2020/09

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, just before the summer shutdown period, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. First trial was 1-hour continuous operation in July 2018, and second trial was 10-hours continuous in July 2019. In both cases, we achieved almost stable operation. Furthermore, in June 2020, we tried to operate continuously for over 40 hours. But in this case, some trouble occurred and the operation was frequently suspended. Through these continuous operation trials, we have identified issues for stable operation of 1 MW. In this presentation, we will report the results of 1-MW continuous operation and issues obtained from these results.

Journal Articles

First measurement and online monitoring of the stripper foil thinning and pinhole formation to achieve a longer foil lifetime in high-intensity accelerators

Saha, P. K.; Yoshimoto, Masahiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Harada, Hiroyuki; Tamura, Fumihiko; Yamamoto, Kazami; Yamazaki, Yoshio; Kinsho, Michikazu; Irie, Yoshiro*

Physical Review Accelerators and Beams (Internet), 23(8), p.082801_1 - 082801_13, 2020/08

AA2020-0279.pdf:1.92MB

 Times Cited Count:4 Percentile:45.12(Physics, Nuclear)

Journal Articles

Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident

Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Yoshida, Tadayoshi; Sato, Tetsuro*; Seki, Akiyuki; Yamamoto, Hideaki*; et al.

Journal of Environmental Radioactivity, 210, p.105878_1 - 105878_12, 2019/12

 Times Cited Count:33 Percentile:80.62(Environmental Sciences)

Journal Articles

The Fast measurement of the monitors data with the beam synchronized tag in J-PARC

Hatakeyama, Shuichiro*; Yamamoto, Kazami; Yoshimoto, Masahiro; Hayashi, Naoki

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.789 - 793, 2019/07

The J-PARC Rapid Cycling Synchrotron (RCS) accelerates 400 MeV LINAC beams up to 3 GeV, and distributes them to the Materials Life Science Experiment Facility (MLF) and the Main Ring Synchrotron (MR) in 25 Hz cycle. To prevent radiation damages from the beam loss and also to detect failures of machines an interlock mechanism called the Machine Protection System (MPS) is introduced. If the beam is stopped by the MPS we should recover it quickly for the users of experiment facilities. The MPS related to the beam dynamics is usually diagnosed by beam loss monitors (BLM), beam position monitors (BPM) and current transformers (CT). Data of these monitors should be distinguished MLF or MR since the parameters for the magnet and the RF systems are different between MLF and MR. We confirmed validity of the method to distinguish the beam destination by using the information of the beam synchronized tag from the reflective memory (RFM) when taking the monitor data in 25 Hz.

Journal Articles

Observation of momentum-dependent charge excitations in hole-doped cuprates using resonant inelastic X-ray scattering at the oxygen $$K$$ edge

Ishii, Kenji*; Toyama, Takami*; Asano, Shun*; Sato, Kentaro*; Fujita, Masaki*; Wakimoto, Shuichi; Tsutsui, Kenji*; Sota, Shigetoshi*; Miyawaki, Jun*; Niwa, Hideharu*; et al.

Physical Review B, 96(11), p.115148_1 - 115148_8, 2017/09

AA2017-0402.pdf:0.81MB

 Times Cited Count:29 Percentile:77.9(Materials Science, Multidisciplinary)

Journal Articles

Improvement of the IPM for the high-intensity beam profile measurement in the J-PARC RCS

Kato, Shinichi; Harada, Hiroyuki; Hatakeyama, Shuichiro; Kawase, Masato; Yamamoto, Kazami; Kinsho, Michikazu

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1089 - 1093, 2016/11

In the J-PARC RCS, the residual gas ionization profile monitor (IPM) is adopted for the nondestructive detection of the 1D transverse distribution of the circulating proton beam. The IPM mainly consists of the divided electrodes generating the external electric field and the detection unit. For the profile measurement, the residual gas ionized by the beam is transported to the detection unit by the external transverse electric field and amplified by the Multi-Channel Plate (MCP) as the electron. After that, these electrons are detected and the 1D distribution is reconstructed. To improve IPM performance, some updates have been performed continuously such as the optimization of the electric field potential and the introduction of the new MCP which has the gradual gain response to the applied voltage. As a result, the IPM shows intended performance in the beam commissioning with the low current condition. However, the distribution cannot be measured in the high current condition such as over 100 kW because the noise increases and hides the signal. To solve this problem, we investigated the source of this noise and examined measures. To compare the simulation and the noise measurement results, we identified the cause of the noise as the electric field from the beam. Therefore, we developed additional electrode component to shield that field based on the simulation result. This component will be installed in 2016 summer. It is expected that the noise is reduced to be 1/100 compared with present one by the new component and the distribution measurement can be performed in the high current condition.

Journal Articles

Beam instrumentation at the 1 MW Proton beam of J-PARC RCS

Yamamoto, Kazami; Hayashi, Naoki; Okabe, Kota; Harada, Hiroyuki; Saha, P. K.; Yoshimoto, Masahiro; Hatakeyama, Shuichiro; Hotchi, Hideaki; Hashimoto, Yoshinori*; Toyama, Takeshi*

Proceedings of 54th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High Brightness and High Power Hadron Beams (HB 2014) (Internet), p.278 - 282, 2015/03

Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Complex (J-PARC) is providing more than 300 kW of proton beam to Material and Life science Facility (MLF) and Main Ring (MR). Last summer shutdown, a new ion source was installed to increase output power to 1 MW. In order to achieve reliable operation of 1 MW, we need to reduce beam loss as well. Beam quality of such higher output power is also important for users. Therefore we developed new monitors that can measure the halo with higher accuracy. We present beam monitor systems for these purposes.

Journal Articles

Influence of electron doping on magnetic order in CeRu$$_2$$Al$$_{10}$$

Kobayashi, Riki*; Kaneko, Koji; Saito, Kotaro*; Mignot, J.-M.*; Andr$'e$, G.*; Robert, J.*; Wakimoto, Shuichi; Matsuda, Masaaki*; Chi, S.*; Haga, Yoshinori; et al.

Journal of the Physical Society of Japan, 83(10), p.104707_1 - 104707_5, 2014/10

 Times Cited Count:17 Percentile:68.53(Physics, Multidisciplinary)

Journal Articles

Pulse based data archive system and analysis for current and beam loss monitors in the J-PARC RCS

Hayashi, Naoki; Hatakeyama, Shuichiro; Yamamoto, Kazami

Proceedings of 5th International Particle Accelerator Conference (IPAC '14) (Internet), p.3800 - 3802, 2014/07

The data archive system in the J-PARC 25-Hz Rapid-Cycling Synchrotron (RCS) records the beam intensity and the beam loss monitor (BLM) pattern for all pulses. The system is based on the common memory and utilizes the timing system of the J-PARC. Although its time resolution is limited, it is useful to detect rare events or phenomena appearing with only higher accelerator repetition. Using these data, the stability of the beam intensity, particularly ion source or the relation between BLM patterns and its causes can be studied pulse-by-pulse basis and it would make use of future improvements.

Journal Articles

Beam loss monitor system of the Rapid Cycling Synchrotron of Japan Proton Accelerator Research Complex

Yamamoto, Kazami; Hayashi, Naoki; Hatakeyama, Shuichiro; Saeki, Riuji; Iwama, Yuhei

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1060 - 1064, 2014/06

The 3 GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton AcceleratoR Complex (J-PARC) provides more than 300 kW beam to the Material and Life Science Facility (MLF) and the Main Ring (MR). In such high intensity hadron accelerator, the lost protons that are a fraction of the beam less than 0.1% cause many problems. Those particles bring about a serious radioactivation and a malfunction of the accelerator components. Therefore, the beam loss monitor (BLM) is one of the most important equipment to observe the state of the beam during operation, and to keep a steady operation. Moreover, if we set operation parameters of BLM adequately, it can detect the beam loss that is 10$$^{-6}$$ fraction of the beam. Thus it enables fine-tuning of the accelerator. In the J-PARC RCS, a proportional counter and a plastic scintillation counter are used for the beam commission and the stable operation as BLM. We report present status of the BLM system in J-PARC RCS.

Journal Articles

Advanced uses of a current transformer and a mult-wire profile monitor for online monitoring of the stripper foil degradation in the 3-GeV RCS of J-PARC

Saha, P. K.; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hayashi, Naoki; Hotchi, Hideaki; Kinsho, Michikazu; Okabe, Kota; Saeki, Riuji; Yamamoto, Kazami; Yamazaki, Yoshio; et al.

Proceedings of 2nd International Beam Instrumentation Conference (IBIC 2013) (Internet), p.239 - 242, 2013/12

Journal Articles

Planning of in-situ experiment for understanding of gas migration behaviour in sedimentary rock, 1; Setting of gas injection procedure

Tanai, Kenji; Fujita, Tomoo; Noda, Masaru*; Yamamoto, Shuichi*; Shimura, Tomoyuki*; Sato, Shin*

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.167 - 172, 2013/01

Japan Atomic Energy Agency has been planning in-situ gas migration test in Horonobe URL, Hokkaido. This paper discusses the optimum gas injection procedure for the test to understand gas migration behaviour in surrounded rock. The stepwise constant gas injection was selected, taking into account domestic and overseas gas related research results. Hydro-mechanical-gas coupling analysis which is able to consider the dissolved methane in Horonobe groundwater was applied to evaluate the gas behaviour. The results have indicated no significant mechanical damages to the rock and have supported the sppropriateness of selected gas injection procedure for the test.

57 (Records 1-20 displayed on this page)