Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Times Cited Count:0Yamamoto, Hajime*; Ikeda, Osamu*; Honda, Takashi*; Kimura, Kenta*; Aoyama, Takuya*; Ogushi, Kenya*; Suzuki, Akio*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; et al.
Physical Review Materials (Internet), 8(9), p.094402_1 - 094402_6, 2024/09
Times Cited Count:2 Percentile:62.00(Materials Science, Multidisciplinary)Okazaki, Hiroyuki*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Ikeda, Takashi*; Yamamoto, Shunya*; Yamaki, Tetsuya*
Journal of Physical Chemistry C, 127(49), p.23628 - 23633, 2023/12
Times Cited Count:1 Percentile:11.44(Chemistry, Physical)Mori, Takashi*; Shimada, Takahiro*; Kai, Satoru*; Otani, Akihito*; Yamamoto, Tomohiko; Yan, X.
Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 8 Pages, 2023/07
Mori, Takashi*; Shimada, Takahiro*; Kai, Satoru*; Otani, Akihito*; Yamamoto, Tomohiko; Yan, X.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05
Lee, O.*; Yamamoto, Kei; Umeda, Maki; Zollitsch, C. W.*; Elyasi, M.*; Kikkawa, Takashi*; Saito, Eiji; Bauer, G. E. W.*; Kurebayashi, Hidekazu*
Physical Review Letters, 130(4), p.046703_1 - 046703_6, 2023/01
Times Cited Count:15 Percentile:91.30(Physics, Multidisciplinary)Tashiro, Koji*; Kusaka, Katsuhiro*; Yamamoto, Hiroko*; Hosoya, Takaaki*; Okada, Shuji*; Ohara, Takashi
Polymers (Internet), 15(2), p.465_1 - 465_44, 2023/01
Times Cited Count:3 Percentile:11.87(Polymer Science)Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*
International Journal of Heat and Mass Transfer, 178, p.121637_1 - 121637_24, 2021/10
Times Cited Count:19 Percentile:78.15(Thermodynamics)Kawasaki, Kohei; Shinada, Kenta; Okamoto, Naritoshi; Kageyama, Tomio; Eda, Takashi; Okazaki, Hiro; Suzuki, Hiromichi; Yamamoto, Kazuya; Otabe, Jun
JAEA-Technology 2020-025, 80 Pages, 2021/03
Plutonium Fuel Production Facility was built in 1988 for the purpose of mainly producing MOX fuel of the prototype fast breeder reactor MONJU, and large glove boxes were installed for handling unsealed nuclear fuel material remotely. The panels of these glove boxes are made of acrylic, except for those installed after December 2013. For fires inside the glove box, automatic fire extinguishing systems using halides have been introduced since the beginning of construction, but for fires outside the glove box, there have been issues with direct measures for acrylic. Therefore, we have developed a fireproof sheet that mitigates the effect of fire outside the glove box on the panels as much as possible. As a result, fire-retardant sheets have been selected and attached to the glove box panels. We conducted a flammability test of the acrylic plate attached with these fireproof sheets and a usage environment influence test of fireproof sheets, and obtained good results. In addition, we set up a working group in the Plutonium Fuel Development Center in view of reducing external exposure during the work of attaching fireproof sheets, in which we discussed and examined the work procedure, and summarized it in the basic procedure manual.
Sakai, Kenji; Oku, Takayuki; Okudaira, Takuya; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke; Hayashida, Hirotoshi*; Kakurai, Kazuhisa*; Shimizu, Hirohiko*; Hirota, Katsuya*; et al.
JPS Conference Proceedings (Internet), 33, p.011116_1 - 011116_6, 2021/03
In neutron fundamental physics, study of correlation term of a neutron spin
and a target nuclear spin
is important because
term interferes to parity non-conserving (PNC) and time reversal non-conserving terms. For this study, a xenon (Xe) is an interesting nucleus because it has been observed an enhancement of PNC effect around neutron resonance peaks, and polarizes up to
by using a spin exchange optical pumping (SEOP) method. We would plan to develop a polarized Xe gas target with a compact in-situ SEOP system, and to study
term by utilizing epithermal neutron beams supplied from a high intense pulsed spallation neutron source. As the first step, we attempted to measure neutron polarizing ability caused by
term at a 9.6 eV s-wave resonance peak of
Xe at BL10 in MLF, by detecting change
of ratio between neutron transmissions with the polarized and unpolarized Xe target. After demonstrating that our apparatus could detect small change (
) of neutron transmissions caused by Doppler broadening effect, a signified value of
has been obtained as preliminary results. For analyzing the obtained
in detail, we are improving our nuclear magnetic resonance and electron paramagnetic resonance systems for evaluating Xe polarization independently of neutron beams.
Koga, Norimitsu*; Umezawa, Osamu*; Yamamoto, Masayuki*; Yamamoto, Takashi*; Yamashita, Takayuki; Morooka, Satoshi; Kawasaki, Takuro; Harjo, S.
Metallurgical and Materials Transactions A, 52(3), p.897 - 901, 2021/03
Times Cited Count:3 Percentile:16.78(Materials Science, Multidisciplinary)Toyoda, Satoshi*; Yamamoto, Tomoki*; Yoshimura, Masashi*; Sumida, Hirosuke*; Mineoi, Susumu*; Machida, Masatake*; Yoshigoe, Akitaka; Suzuki, Satoru*; Yokoyama, Kazushi*; Ohashi, Yuji*; et al.
Vacuum and Surface Science, 64(2), p.86 - 91, 2021/02
We have developed measurement and analysis techniques in X-ray photoelectron spectroscopy. To begin with, time-division depth profiles of gate stacked film interfaces have been achieved by NAP-HARPES (Near Ambient Pressure Hard X-ray Angle-Resolved Photo Emission Spectroscopy) data. We then have promoted our methods to quickly perform peak fittings and depth profiling from time-division ARPES data, which enables us to realize 4D-XPS analysis. It is found that the traditional maximum entropy method (MEM) combined with Jackknife averaging of sparse modeling in NAP-HARPES data is effective to perform dynamic measurement of depth profiles with high precision.
Okudaira, Takuya; Oku, Takayuki; Ino, Takashi*; Hayashida, Hirotoshi*; Kira, Hiroshi*; Sakai, Kenji; Hiroi, Kosuke; Takahashi, Shingo*; Aizawa, Kazuya; Endo, Hitoshi*; et al.
Nuclear Instruments and Methods in Physics Research A, 977, p.164301_1 - 164301_8, 2020/10
Times Cited Count:20 Percentile:88.43(Instruments & Instrumentation)Yamamoto, Tomoki*; Okudaira, Takuya; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 101(6), p.064624_1 - 064624_8, 2020/06
Times Cited Count:18 Percentile:82.50(Physics, Nuclear)Haga, Yoshinori; Sugai, Takashi*; Matsumoto, Yuji*; Yamamoto, Etsuji
JPS Conference Proceedings (Internet), 29, p.013003_1 - 013003_5, 2020/02
Okudaira, Takuya; Shimizu, Hirohiko*; Kitaguchi, Masaaki*; Hirota, Katsuya*; Haddock, C. C.*; Ito, Ikuya*; Yamamoto, Tomoki*; Endo, Shunsuke*; Ishizaki, Kohei*; Sato, Takumi*; et al.
EPJ Web of Conferences, 219, p.09001_1 - 09001_6, 2019/12
Parity violating effects enhanced by up to 10 times have been observed in several neutron induced compound nuclei. There is a theoretical prediction that time reversal (T) violating effects can also be enhanced in these nuclei implying that T-violation can be searched for by making very sensitive measurements. However, the enhancement factor has not yet been measured in all nuclei. The angular distribution of the (n,
) reaction was measured with
La by using a germanium detector assembly at J-PARC, and the enhancement factor was obtained. From the result, the measurement time to achieve the most sensitive T-violation search was estimated as 1.4 days, and a 40% polarized
La target and a 70% polarized
He spin filter whose thickness is 70 atm
cm are needed. Therefore high quality
He spin filter is developed in JAEA. The measurement result of the (n,
) reaction at J-PARC and the development status of the
He spin filter will be presented.
Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*
International Journal of Heat and Mass Transfer, 144, p.118696_1 - 118696_19, 2019/12
Times Cited Count:23 Percentile:72.71(Thermodynamics)Okudaira, Takuya; Oku, Takayuki; Sakai, Kenji; Ino, Takashi*; Hayashida, Hirotoshi*; Hiroi, Kosuke; Shinohara, Takenao; Kakurai, Kazuhisa*; Aizawa, Kazuya; Shimizu, Hirohiko*; et al.
Proceedings of Science (Internet), 356, p.029_1 - 029_5, 2019/12
The technology development section carries out the development of the neutron polarization device: He Spin Filter. It is often used for the fundamental physics region. In order to explain the matter-dominated universe, a time reversal violation is necessary and searches for new physics are conducted in the world. The T-violation search using a polarized neutron beam is planned at J-PARC. A large
He spin filter is needed to polarize high energy neutrons for the experiment and is developed in JAEA. Recently, we developed the accurate measurement system to evaluate the polarization of
He and a vacuum system to make the
He spin filter, and large
He spin filters for epi-thermal neutron was made using the system. The current status of the development of the
He spin filter will be talked.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:15 Percentile:98.57(Quantum Science & Technology)