Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 90

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

H$$_{2}$$ production from methane decomposition by fullerene at low temperature

Tokunaga, Tomoharu*; Kuno, Kohei*; Kawakami, Takumi*; Yamamoto, Takahisa*; Yoshigoe, Akitaka

International Journal of Hydrogen Energy, 45(28), p.14347 - 14353, 2020/05

 Times Cited Count:1 Percentile:5.07(Chemistry, Physical)

To understand the catalytic behavior of graphite and carbon black with mainly 6-membered rings with sp$$^{2}$$ bonds for H$$_{2}$$ production by CH$$_{4}$$ decomposition, fullerenes with 6-membered rings and also those comprising 5- and 7-membered rings with sp$$^{2}$$ bonds was investigated using gas chromatography, XPS and TEM analysis. From these analysis, it is anticipated that the ring structures without 6-membered rings in carbon materials with sp$$^{2}$$ bonding contribute to the catalytic behavior for CH$$_{4}$$ decomposition at a low temperature of 400$$^{circ}$$C.

Journal Articles

Measurement of the angular distribution of $$gamma$$-rays after neutron capture by $$^{139}$$La for a T-violation search

Okudaira, Takuya; Shimizu, Hirohiko*; Kitaguchi, Masaaki*; Hirota, Katsuya*; Haddock, C. C.*; Ito, Ikuya*; Yamamoto, Tomoki*; Endo, Shunsuke*; Ishizaki, Kohei*; Sato, Takumi*; et al.

EPJ Web of Conferences, 219, p.09001_1 - 09001_6, 2019/12

Parity violating effects enhanced by up to 10$$^6$$ times have been observed in several neutron induced compound nuclei. There is a theoretical prediction that time reversal (T) violating effects can also be enhanced in these nuclei implying that T-violation can be searched for by making very sensitive measurements. However, the enhancement factor has not yet been measured in all nuclei. The angular distribution of the (n,$$gamma$$) reaction was measured with $$^{139}$$La by using a germanium detector assembly at J-PARC, and the enhancement factor was obtained. From the result, the measurement time to achieve the most sensitive T-violation search was estimated as 1.4 days, and a 40% polarized $$^{139}$$La target and a 70% polarized $$^3$$He spin filter whose thickness is 70 atm$$cdot$$cm are needed. Therefore high quality $$^3$$He spin filter is developed in JAEA. The measurement result of the (n,$$gamma$$) reaction at J-PARC and the development status of the $$^3$$He spin filter will be presented.

Journal Articles

New precise measurements of muonium hyperfine structure at J-PARC MUSE

Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.

EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01

 Times Cited Count:12 Percentile:99.51

Journal Articles

Diffusion behavior of D$$_{2}$$O in the film on Fe oxidized at high temperature in air

Haruna, Takumi*; Yamamoto, Tatsuya*; Miyairi, Yoji*; Shibata, Toshio*; Taniguchi, Naoki; Sakamaki, Keiko; Tachikawa, Hirokazu*

Zairyo To Kankyo, 64(5), p.201 - 206, 2015/05

Diffusion coefficients of D$$_{2}$$O in the films was determined in order to estimate corrosion rate of carbon steel for the overpack in ground water. Fe plates were heated to form oxide films. The films were characterized with XRD and SEM. After that, the specimen was contacted with D$$_{2}$$O for 5184 ks, followed by subjected to TDS to obtain an amount of D$$_{2}$$O absorbing into the film. As a result, single-layered film of Fe$$_{3}$$O$$_{4}$$ was formed at 573 and 723 K, and double-layered film of Fe$$_{2}$$O$$_{3}$$ and Fe$$_{3}$$O$$_{4}$$ was formed at 873 K. It was found that an amount of D$$_{2}$$O in the film correlated linearly with a square root of the absorption period, and that the amount was steady for a long period. From the results and Fick's second law, diffusion coefficients of D$$_{2}$$O was determined as 9.7$$times$$10$$^{-13}$$ cm$$^{2.}$$s$$^{-1}$$ for the Fe$$_{3}$$O$$_{4}$$ film, and 5.5$$times$$10$$^{-13}$$ cm$$^{2.}$$s$$^{-1}$$ to 2.2$$times$$10$$^{-12}$$ cm$$^{2.}$$s$$^{-1}$$ for Fe$$_{2}$$O$$_{3}$$ film.

JAEA Reports

Development of a plasma generator for a high power NBI ion source

Dairaku, Masayuki; Watanabe, Kazuhiro; Tobari, Hiroyuki; Kashiwagi, Mieko; Inoue, Takashi; Sakamoto, Keishi; Hanada, Masaya; Akino, Noboru; Ikeda, Yoshitaka; Yamamoto, Takumi*

JAEA-Technology 2008-091, 23 Pages, 2009/03


A plasma generator whose inner dimensions are 25 cm in width, 59 cm in length, and 31 cm in depth for a high power and long pulse ion source in neutral beam injector has been designed and fabricated. The plasma generator has a beam extraction area of 12 cm in width and 46 cm in length. A target of the output beam using the plasma generator is to produce deuterium positive ion beams up to 120 keV, 65 A for longer than 200 s pulses. Arrangement of the permanent magnets and filaments has been designed by using an electron trajectory simulation code to produce uniform and high density plasma with high proton yield. Cooling channels have been also designed to operate the long pulse plasma generation with a 100 kW arc discharge power.

Journal Articles

Status of JT-60SA tokamak under the EU-JA broader approach agreement

Matsukawa, Makoto; Kikuchi, Mitsuru; Fujii, Tsuneyuki; Fujita, Takaaki; Hayashi, Takao; Higashijima, Satoru; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Ide, Shunsuke; Ishida, Shinichi; et al.

Fusion Engineering and Design, 83(7-9), p.795 - 803, 2008/12

 Times Cited Count:17 Percentile:74.25(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Status of KSTAR electron cyclotron heating system

Bae, Y. S.*; Na, Y. S.*; Oh, Y. K.*; Kwon, M.*; Bak, J. S.*; Lee, G. S.*; Jeong, J. H.*; Park, S. I.*; Cho, M. H.*; Namkung, W.*; et al.

Fusion Science and Technology, 52(2), p.321 - 333, 2007/08

 Times Cited Count:23 Percentile:82.58(Nuclear Science & Technology)

An 84-GHz, 500-kW gyrotron system have been installed at KSTAR, and the initial test of the gyrotron has been carried out with 20 $$mu$$sec-pulse and an output RF power of 500 kW. The launcher system having with a highly flexible steering mirror was fabricated and would inject 500-kW rf power into the KSTAR plasma. KSTAR will employ 170-GHz EC current drive (CD) in ITER-relevant experiments such as the suppression of the neoclassical tearing modes and the creation of an electron internal transport barrier. A JAEA 170-GHz, 1-MW gyrotron on loan in accordance with a Korea-Japan fusion collaboration agreement, and it will be used for the 170-GHz, 1-MW ECCD system in 2010. This paper describes the current status of the installation and initial conditioning tests of the 84-GHz gyrotron system as well as the development plan of the 170-GHz ECH and CD system. Also, this paper discusses the CD efficiency and the steering range of the second-harmonic X-mode injection.

Journal Articles

Overview of national centralized tokamak program; Mission, design and strategy to contribute ITER and DEMO

Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.

Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12

To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.

Journal Articles

Present status of the negative ion based NBI system for long pulse operation on JT-60U

Ikeda, Yoshitaka; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Hanada, Masaya; Honda, Atsushi; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; et al.

Nuclear Fusion, 46(6), p.S211 - S219, 2006/06

 Times Cited Count:55 Percentile:86.74(Physics, Fluids & Plasmas)

Recently, the extension of the pulse duration up to 30 sec has been intended to study quasi-steady state plasma on JT-60U N-NBI system. The most serious issue is to reduce the heat load on the grids for long pulse operation. Two modifications have been proposed to reduce the heat load. One is to suppress the beam spread which may be caused by beamlet-beamlet interaction in the multi-aperture grid due to the space charge force. Thin plates were attached on the extraction grid to modify the local electric field. The plate thickness was optimized to steer the beamlet deflection. The other is to reduce the stripping loss, where the electron of the negative ion beam is stripped and accelerated in the ion source and then collides with the grids. The ion source was modified to reduce the pressure in the accelerator column to suppress the beam-ion stripping loss. Up to now, long pulse injection of 17 sec for 1.6 MW and 25 sec for $$sim$$1 MW has been obtained by one ion source with these modifications.

JAEA Reports

Experiments of JRR-4 low-enriched-uranium-silicied fuel core

Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; et al.

JAEA-Technology 2006-028, 115 Pages, 2006/03


JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998.

Journal Articles

Heating, current drive, and advanced plasma control in JFT-2M

Hoshino, Katsumichi; Yamamoto, Takumi; Tamai, Hiroshi; Oasa, Kazumi; Kawashima, Hisato; Miura, Yukitoshi; Ogawa, Toshihide; Shoji, Teruaki*; Shibata, Takatoshi; Kikuchi, Kazuo; et al.

Fusion Science and Technology, 49(2), p.139 - 167, 2006/02

 Times Cited Count:2 Percentile:17.66(Nuclear Science & Technology)

The main results obtained by the various heating and current drive systems, external coil system and divertor bias system are reviewed from the viewpoint of the advanced active control of the tokamak plasma. Also, the features of each system are described. The contribution of the JFT-2M in these areas are summarized.

Journal Articles

Recent progress of negative ion based neutral beam injector for JT-60U

Umeda, Naotaka; Yamamoto, Takumi; Hanada, Masaya; Grisham, L. R.*; Kawai, Mikito; Oga, Tokumichi; Akino, Noboru; Inoue, Takashi; Kazawa, Minoru; Kikuchi, Katsumi*; et al.

Fusion Engineering and Design, 74(1-4), p.385 - 390, 2005/11

 Times Cited Count:9 Percentile:54.19(Nuclear Science & Technology)

In negative ion based neutral beam injector (N-NBI) for JT-60U, some modifications for extent pulse duration from 10 second, which is design value, to 30 second was conducted. Main limit to prevent pulse extension was heat loads onto grounded grid in an ion source and onto beam limiter placed at 22 m from the ion source. To reduce these heat loads, beam extraction area was optimized and the limiter was changed to one which had about twice thermal capacity. As a result of these modifications, the temperature rise of the water which was cooling grounded grid could be suppressed under 40 degree, which can operate in steady state condition. The temperature rise of the limiter could be restricted to 60%. Untill now the beam pulse extended to 17 second of 1.6MW power at 366keV energy, and injection of 30 seconds will be achieved in next experiment.

Journal Articles

Steady state high $$beta_{rm N}$$ discharges and real-time control of current profile in JT-60U

Suzuki, Takahiro; Isayama, Akihiko; Sakamoto, Yoshiteru; Ide, Shunsuke; Fujita, Takaaki; Takenaga, Hidenobu; Luce, T. C.*; Wade, M. R.*; Oikawa, Toshihiro; Naito, Osamu; et al.

Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11

no abstracts in English

Journal Articles

Progress in physics and technology developments for the modification of JT-60

Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.

Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02

 Times Cited Count:2 Percentile:6.62(Physics, Fluids & Plasmas)

The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-$$beta$$. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.

Journal Articles

Present status of development on 500keV negative ion source

Yamamoto, Takumi; Oga, Tokumichi; Kawai, Mikito; Akino, Noboru; Kazawa, Minoru; Umeda, Naotaka

Heisei-16-Nen Denki Gakkai Zenkoku Taikai Koen Rombunshu, 219 Pages, 2004/00

In JAERI, 10 MW and 500 keV negative-ion based neutral beam injection (N-NBI) system for JT-60U was constructed in 1996, in order to study a plasma heating and current drive in high-density plasma by high-energy beam injection. Thereafter, improvement of beam performance has been carried out while N-NBI system was available for experiments on JT-60U. The maximum beam energy of 418 keV and the maximum injection power of 6.2 MW have been achieved with a hydrogen beam, so far. In addition, 10 seconds of injection pulse duration, which is the designed value, was attained at the injection power of 2.6MW. Further improvement is required for the performance to reach to the final targets. It was made it clear that the performance was limited by the withstanding voltage of acceleration and heat load on acceleration grids in the ion source.

Journal Articles

Accelerator R&D for JT-60U and ITER NB systems

Inoue, Takashi; Hanada, Masaya; Iga, Takashi*; Imai, Tsuyoshi; Kashiwagi, Mieko; Kawai, Mikito; Morishita, Takatoshi; Taniguchi, Masaki; Umeda, Naotaka; Watanabe, Kazuhiro; et al.

Fusion Engineering and Design, 66-68, p.597 - 602, 2003/09

 Times Cited Count:21 Percentile:79.26(Nuclear Science & Technology)

The neutral beam (NB) injection has been one of the most promising methods for plasma heating and current drive in tokamak fusion devices. JAERI has developed high energy electrostatic accelerators for the NB systems in JT-60U and ITER. Recent progress on this R&D are as follows: 1) In the JT-60U NB system, some of the beams has been deflected due to distorted electric field in the accelerator, resulting in an excess heat load on the NB port. By correcting the electric field, a continuous injection of H$$^{0}$$ beam was succeeded for 10 s with the NB power of 2.6 MW at 355 keV. 2) To increase the beam energy, a metal structure called stress ring was designed. The ring reduces electric field concentration at the triple junction point (interface between metal and dielectric insulator inside vacuum). Initial test of the accelerators with the stress rings has shown higher voltage hold off performance in both accelerators for JT-60U and ITER R&D than that without rings.

Journal Articles

Technological development and progress of plasma performance on the JT-60U

Yamamoto, Takumi; JT-60 Team

Fusion Engineering and Design, 66-68, p.39 - 48, 2003/09

 Times Cited Count:3 Percentile:26.24(Nuclear Science & Technology)

Development of technology on facilities for JT-60U and resultant progress of the plasma performance are reported. The main objectives of JT-60U are to demonstrate integrated high plasma performance that contributes to establishment of the physical and technological bases of ITER and a steady state tokamak fusion reactor. Recently, performance exploration in advanced tokamak regimes has been conducted intensively, by using 500 keV negative-ion based neutral beam injection (N-NBI) and 110GHz electron cyclotron (EC) systems for plasma heating and current drive, and a repetitive centrifugal pellet injector for efficient core particle fueling.

Journal Articles

Progress of negative ion source improvement in N-NBI for JT-60U

Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Hanada, Masaya; Honda, Atsushi; Inoue, Takashi; Kazawa, Minoru; Kikuchi, Katsumi*; Kuriyama, Masaaki; et al.

Fusion Science and Technology, 44(2), p.508 - 512, 2003/09

 Times Cited Count:4 Percentile:32.08(Nuclear Science & Technology)

The negative ion source for negative ion based neutral beam injector(N-NBI) of JT-60U aims at generating a negative ion beam with 500 keV and 22A for 10s. The N-NBI system was completed in 1996, followed by starting the efforts to increase beam power and energy. (1)Spatial non-uniformity of the source plasma causes position-dependent divergence of a beamlet due to mis-matching of local beam perveance. A part of the divergent energetic beams is intercepted by the grids and resultantly produce the excessive heat load of the grids and/or induce the high voltage breakdown. So several techniques to take measures against and to correct the non-uniformity in these sources were implemented. (2)Correction of beamlet deflection by adjusting the electric field at the extraction grids. It improved the beam divergence and then decreased an excessive heat load of a beam limiter by more than 50 %. As a result, the maximum injection power 6.2MW and beam pulse duration 10 seconds were obtaind.

Journal Articles

Heating and current drive by N-NBI in JT-60U and LHD

Kaneko, Osamu*; Yamamoto, Takumi; Akiba, Masato; Hanada, Masaya; Ikeda, Katsunori*; Inoue, Takashi; Nagaoka, Kenichi*; Oka, Yoshihide*; Osakabe, Masaki*; Takeiri, Yasuhiko*; et al.

Fusion Science and Technology, 44(2), p.503 - 507, 2003/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

High energy negative-ion-based neutral beam injection (N-NBI) is expected as an efficient and reliable tool of heating and current driving for reactor plasmas such as ITER. A world wide activity on developing technology of negative ion production and beam formation started in 1980's and the great progress has been achieved up to now. In particular, Japan has two large projects that planned adopting N-NBI for real plasma experiments; the JT-60U tokamak and the LHD heliotron, which further motivated the R&D activity. These R&D programs were carried out at JAERI and NIFS separately in Japan, and both were successfully done. The first beam injection experiment was made on the JT-60U in 1996, followed by the LHD in 1998. They were the first experiments on heating plasma by high energy beam in tokamaks and in stellerators, and the obtained results were very promising.

Journal Articles

Improvement of beam performance in the negative-ion based NBI system for JT-60U

Umeda, Naotaka; Grisham, L. R.*; Yamamoto, Takumi; Kuriyama, Masaaki; Kawai, Mikito; Oga, Tokumichi; Mogaki, Kazuhiko; Akino, Noboru; Yamazaki, Haruyuki*; Usui, Katsutomi; et al.

Nuclear Fusion, 43(7), p.522 - 526, 2003/07

 Times Cited Count:39 Percentile:74.34(Physics, Fluids & Plasmas)

The Negative-ion based Neutral Beam Injection System (N-NBI) for JT-60U has been operating for plasma heating and non-inductive current drive since 1996. The target is inject of neutral beam into plasma with beam energy 500 keV, injection power 10 MW, for 10 seconds. Until now pulse duration time was restricted up to 5.3 seconds because of larger heat load of port limiter. Recently from the measurement of beam profile at 3.5m downstream from the ion source, it was found that the outermost beamlets in each segment were deflected outward. It was caused by non-uniform electric field by grooves. By improving this, outermost beamlet deflection angle was decreased from 14 mrad to 4 mrad. In this result, 10 seconds injection, which is target parameter, has achieved at 355 keV, 2.6MW, while pulse length was restricted up to 5.3 seconds by larger heat load of port limiter.

90 (Records 1-20 displayed on this page)