Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Taguchi, Miki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Ozawa, Satoru*; Hasegawa, Ryuichi*; Morimitsu, Yuma*; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Polymer Journal, 7 Pages, 2025/03
Times Cited Count:0 Percentile:0.00(Polymer Science)Sato, Hinata; Mori, Amami; Kuno, Sorato; Horigome, Kazushi; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo
JAEA-Technology 2024-011, 56 Pages, 2024/10
Flush-out, which recovers remaining nuclear materials in the process and transfer it to a highly radioactive liquid waste storage tank, has been performed at main plant of Tokai Reprocessing Plant. The flush-out has been composed from three steps: first step is to remove of spent fuel sheared powder, second step is to collect plutonium solution stored in the process, and third step is to convert uranium solution into uranium trioxide powder. The first step of flush-out activity has been completed in 2022. Second and third steps of flush-out have been completed from March 2023 to February 2024. Process control analysis has been performed for operation of the facility, and material accountancy analysis has been performed to control the accountancy of nuclear materials. In addition, related analytical work such as pretreatment for transporting inspection samples for safeguards analysis laboratories in IAEA has been also performed. This report describes results of analytical work performed in collections of plutonium and uranium solutions in second and third steps of the flush-out, including calibration of analytical equipment, waste generation, and education and training of analytical operator.
Yamamoto, Masahiko; Horigome, Kazushi; Goto, Yuichi; Taguchi, Shigeo
Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), 4 Pages, 2024/10
Flush-out activities of Tokai Reprocessing Plant were completed in February, 2024. Since it contained remaining nuclear materials in main process of the facility, purpose of activities was to flush-out them and to rinse with nitric acid solution. This paper describes analysis of nuclear materials related to flush-out activities.
Sato, Nobuaki*; Kameo, Yutaka; Sato, Soichi; Kumagai, Yuta; Sato, Tomonori; Yamamoto, Masahiro*; Watanabe, Yutaka*; Nagai, Takayuki; Niibori, Yuichi*; Watanabe, Masayuki; et al.
Introduction to Dismantling and Decommissioning Chemistry, 251 Pages, 2024/09
This book focuses on the dismantling and decommissioning of nuclear facilities and reactors that have suffered severe accidents. In Part 1, we introduce basic aspects ranging from fuel chemistry, analytical chemistry, radiation chemistry, corrosion, and decontamination chemistry to waste treatment and disposal. Then, Part 2 covers the chemistry involved in the decommissioning of various nuclear facilities, and discusses what chemical approaches are necessary and possible for the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Plants, how decommissioning should be carried out, and what kind of research and development and also human resource development are required for this.
Amekura, Hiroshi*; Chettah, A.*; Narumi, Kazumasa*; Chiba, Atsuya*; Hirano, Yoshimi*; Yamada, Keisuke*; Yamamoto, Shunya*; Leino, A. A.*; Djurabekova, F.*; Nordlund, K.*; et al.
Nature Communications (Internet), 15, p.1786_1 - 1786_10, 2024/02
Times Cited Count:2 Percentile:57.35(Multidisciplinary Sciences)Injecting high-energy heavy ions in the electronic stopping regime into solids can create cylindrical damage zones called latent ion tracks. Although these tracks form in many materials, none have ever been observed in diamond, even when irradiated with high-energy GeV uranium ions. Here we report the first observation of ion track formation in diamond irradiated with 2-9 MeV C fullerene ions. Depending on the ion energy, the mean track length (diameter) changed from 17 (3.2) nm to 52 (7.1) nm. High resolution scanning transmission electron microscopy (HR-STEM) indicated the amorphization in the tracks, in which
-bonding signal from graphite was detected by the electron energy loss spectroscopy (EELS).
Ishibashi, Atsushi; Masui, Kenji; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo; Ishikawa, Satoshi*; Ishikawa, Tomoya*
Nihon Hozen Gakkai Dai-19-Kai Gakujutsu Koenkai Yoshishu, p.18 - 21, 2023/08
An inner-box typed hot cell for analysis of highly radioactive samples has been operated for about 40 years in Tokai Reprocessing Plant since its installation in 1980. During the operation of analytical hot cell, improvement and upgrades including auxiliary equipment have been performed, in addition to keep the equipment in proper condition through periodic inspections and maintenance. This paper describes about these efforts for analytical hot cell and its results.
Aoya, Juri; Mori, Amami; Sato, Hinata; Kono, Soma; Morokado, Shiori; Horigome, Kazushi; Goto, Yuichi; Yamamoto, Masahiko; Taguchi, Shigeo
JAEA-Technology 2023-008, 34 Pages, 2023/06
Flush-out, by which nuclear materials in the Tokai Reprocessing Plant process are recovered, has been started in June 2022 as the first step of decommissioning. Flush-out consists of removal of spent fuel sheared powder, plutonium solution, uranium solution, and the other nuclear materials. Removal of spent fuel sheared powder has been completed in September 2022. During removal of spent fuel sheared powder, uranium concentration, plutonium concentration, acid concentration, radioactivity concentration, and solution density have been analyzed for process control. For nuclear material accountancy, uranium concentration, plutonium concentration, isotope ratio, and solution density have been analyzed. Analysis work including sample pretreatment before transportation to IAEA analytical facility for safeguards, and the other operations related to Flush-out such as calibration of analytical instruments, education, and training of operators are reported.
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:7 Percentile:73.20(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Suehara, Michinori*; Yamamoto, Yuichi*; Ogura, Shohei*; Fukutani, Katsuyuki
Journal of Non-Crystalline Solids, 574, p.121160_1 - 121160_4, 2021/12
Times Cited Count:0 Percentile:0.00(Materials Science, Ceramics)Noma, Yuichiro*; Kotegawa, Hisashi*; Kubo, Tetsuro*; To, Hideki*; Harima, Hisatomo*; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*; Ito, Kohei*; Nakamura, Ai*; et al.
Journal of the Physical Society of Japan, 90(7), p.073707_1 - 073707_5, 2021/07
Times Cited Count:1 Percentile:11.54(Physics, Multidisciplinary)Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:60 Percentile:96.18(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200
C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Amekura, Hiroshi*; Toulemonde, M.*; Narumi, Kazumasa*; Li, R.*; Chiba, Atsuya*; Hirano, Yoshimi*; Yamada, Keisuke*; Yamamoto, Shunya*; Ishikawa, Norito; Okubo, Nariaki; et al.
Scientific Reports (Internet), 11(1), p.185_1 - 185_11, 2021/01
Times Cited Count:15 Percentile:69.32(Multidisciplinary Sciences)We report the track formation of 10 nm in diameter in silicon irradiated with 6 MeV C, i.e., much lower energy than the previously reported energy threshold.
Miura, Hikaru*; Kuribara, Yuichi; Yamamoto, Masayoshi*; Sakaguchi, Aya*; Yamaguchi, Noriko*; Sekizawa, Oki*; Nitta, Kiyofumi*; Higaki, Shogo*; Tsumune, Daisuke*; Itai, Takaaki*; et al.
Scientific Reports (Internet), 10, p.11421_1 - 11421_9, 2020/07
Times Cited Count:21 Percentile:63.02(Multidisciplinary Sciences)Li, R.*; Narumi, Kazumasa*; Chiba, Atsuya*; Hirano, Yu*; Tsuya, Daiju*; Yamamoto, Shunya*; Saito, Yuichi*; Okubo, Nariaki; Ishikawa, Norito; Pang, C.*; et al.
Nanotechnology, 31(26), p.265606_1 - 265606_9, 2020/06
Times Cited Count:7 Percentile:34.47(Nanoscience & Nanotechnology)We report the elongation of embedded Au nanoparticles (NPs) in three different matrices under irradiations of 4 MeV C ions and 200 MeV Xe ions. Large elongation of Au NPs was observed for crystalline indium tin oxide (ITO) under both 4 MeV C
and 200 MeV Xe irradiation. The ITO layer preserved the crystallinity even after large elongation was induced. This is the first report of the elongation of metal NPs in a crystalline matrix.
Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Arai, Takehiko*; Nakauchi, Yusuke*; Nakamura, Tomoki*; Matsuoka, Moe*; et al.
Science, 364(6437), p.272 - 275, 2019/04
Times Cited Count:303 Percentile:99.67(Multidisciplinary Sciences)The near-Earth asteroid 162173 Ryugu, the target of Hayabusa2 sample return mission, is believed to be a primitive carbonaceous object. The Near Infrared Spectrometer (NIRS3) on Hayabusa2 acquired reflectance spectra of Ryugu's surface to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micron was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally- and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.
Sasaki, Hirokazu*; Nishikubo, Hideo*; Nishida, Shinsuke*; Yamazaki, Satoshi*; Nakasaki, Ryusuke*; Isomatsu, Takemi*; Minato, Ryuichiro*; Kinugawa, Kohei*; Imamura, Akihiro*; Otomo, Shinya*; et al.
Furukawa Denko Jiho, (138), p.2 - 10, 2019/02
no abstracts in English
Goto, Yuichi; Yamamoto, Masahiko; Kuno, Takehiko; Inada, Satoshi
Nihon Hozen Gakkai Dai-15-Kai Gakujutsu Koenkai Yoshishu, p.489 - 492, 2018/07
Radioactive liquid waste from the Tokai Reprocessing Facility Analytical Laboratory is temporarily stored in intermediate waste storage tank by using receiving valves. Then, the liquid waste is transferred to liquid treatment facility by using liquid feed valves. The deterioration of the gasket part of these valves (leakage of waste liquid) was confirmed in 2004. Since then, the material of gaskets was changed from polyethylene to Teflon. In 2016, the gaskets were replaced by periodical update. Therefore, physical properties of used gaskets were investigated, and the relevance between radioactive level and degradation degree was evaluated.
Noma, Yuichiro*; Kotegawa, Hisashi*; Kubo, Tetsuro*; To, Hideki*; Harima, Hisatomo*; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*; Ito, Kohei*; Haller, E. E.*; et al.
Journal of the Physical Society of Japan, 87(3), p.033704_1 - 033704_5, 2018/03
Times Cited Count:4 Percentile:32.70(Physics, Multidisciplinary)Kijima, Yuichi; Yamamoto, Yoichi; Oda, Tetsuzo
JAEA-Technology 2017-028, 33 Pages, 2018/01
The International Noble Gas Experiment related to monitoring network for radioactive noble gas (xenon) has been carried out all over the world, as part of the International Monitoring System (IMS) of CTBT. Thirty IMS radionuclide stations including the Takasaki station in Japan are monitoring radioxenon. The past measurement results show that several stations often detect radioxenon and the major emission source of these radioxenon is medical radioisotope production facilities. And nuclear power plants and medical institutions used radioxenon for nuclear medicine diagnosis, and so on are also considered as the possible sources of radioxenon, and it is therefore important to understand the background behavior of radioxenon originated from above facilities for enhancement of monitoring capability for nuclear tests. The international joint measurement was conducted in 2012 by the Preparatory Commission for the CTBT Organization, US Pacific Northwest National Laboratory, Japan Chemical Analysis Center and JAEA at the Ohminato site of JAEA Aomori Research and Development Center in Mutsu city, Aomori, as part of investigation on radioxenon background in East Asia region. In 2014, the additional measurement was carried out at the same place for further investigation. A high sensitive Transportable Xenon Laboratory developed by PNNL was used for this measurement. This paper describes the outline and the results of the joint measurement conducted in 2012 and 2014.