Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tamura, Yukiko*; Arakawa, Masato*; Takenaka, Mikihito*; Nakanishi, Yohei*; Fujinami, So*; Shibata, Motoki*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Yamada, Masako*; Seto, Hideki*; et al.
Polymer, 333, p.128662_1 - 128662_8, 2025/08
Soma, Yasutaka; Komatsu, Atsushi; Kaji, Yoshiyuki; Yamamoto, Masahiro*; Igarashi, Takahiro
Corrosion Science, 251, p.112897_1 - 112897_15, 2025/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Experimental and modeling studies of the oxygen ingression at the crevices of stainless steels were conducted in high-temperature water (288C). The limiting distance of oxygen ingression,
, was defined as the point beyond which the primary surface oxide changed (hematite
magnetite), regardless of crevice gap, oxygen concentration, and time. In situ measurements revealed increased electrical conductivity around the
position indicating ion enrichment due to a differential oxygen concentration cell.
increased with increasing crevice gap, oxygen concentration, and immersion time. Modeling study suggested that oxide layer growth reduced anodic dissolution and slowed oxygen consumption, allowing oxygen ingression with time.
Okuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Taguchi, Miki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Ozawa, Satoru*; Hasegawa, Ryuichi*; Morimitsu, Yuma*; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Polymer Journal, 7 Pages, 2025/03
Times Cited Count:0 Percentile:0.00(Polymer Science)Yamamoto, Katsuhiro*; Imai, Tatsuya*; Kawai, Atsuki*; Ito, Eri*; Miyazaki, Tsukasa*; Miyata, Noboru*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 16(48), p.66782 - 66791, 2024/11
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Miyazaki, Tsukasa*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Takenaka, Mikihito*; Nakanishi, Yohei*; Shibata, Motoki*; Aoki, Hiroyuki; Yamada, Norifumi*; et al.
Colloids and Surfaces A; Physicochemical and Engineering Aspects, 701, p.134928_1 - 134928_8, 2024/11
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Soyama, Kazuhiko; Hayashida, Hirotoshi*; Maruyama, Ryuji; Yamazaki, Dai; Goto, Yoshiki*; Kobayashi, Yuki*; Arakawa, Shohei*; Yamamoto, Yugo*; Suba, Kenta*; Yamamura, Kazuya*
JAEA-Research 2024-006, 15 Pages, 2024/10
A neutron optics design has been conducted for a neutron magnetic microscope that utilize a Wolter type I multilayer supermirror for the purpose of magnetic fields imaging in magnetic materials. Ray trace simulation was performed for a magnifying imaging optical system with a magnification rate of 12.5 times. Based on classical model of Lamor precession, depolarization due to magnetic domains was simulated, and the effect of slope errors on the Wolter mirror created by the replica method on the spatial resolution of the microscope was investigated. As a result, reference data about the shape error required to obtain spatial resolution on the order of micrometers was obtained.
Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Miyakoshi, Ryosuke*; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Hara, Keigo*; et al.
Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.765 - 769, 2024/10
no abstracts in English
Tamura, Fumihiko; Sugiyama, Yasuyuki*; Okita, Hidefumi; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.
Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.774 - 776, 2024/10
The 3GeV RCS of J-PARC accelerates proton beams with a maximum beam intensity of 8e13 ppp, utilizing the features of magnetic alloy (MA) cavities. The beam is extracted in a single turn by kicker magnets, and immediately after the beam is extracted, a short voltage jump occurs in the cavity. This is due to a delay in the voltage control feedback, which takes a certain amount of time to respond to the step-like decrease of beam current upon single-turn extraction. In a wideband (Q=2) MA cavity, this response delay is observed as a voltage jump. This voltage jump can cause damage to the cavity system if the voltage at the time of extraction is high. Therefore, we prepared a logic to suppress the output synchronously with the beam extraction as a function of the LLRF control system. The details of the function and test results are reported.
Wakabayashi, Yuki*; Krockenberger, Y.*; Yamagami, Kohei*; Wadachi, Hiroki*; Shibata, Goro; Fujimori, Atsushi*; Kawamura, Naomi*; Suzuki, Motohiro*; Taniyasu, Yoshitaka*; Yamamoto, Hideki*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 12(5), p.291 - 293, 2024/10
no abstracts in English
Sato, Nobuaki*; Kameo, Yutaka; Sato, Soichi; Kumagai, Yuta; Sato, Tomonori; Yamamoto, Masahiro*; Watanabe, Yutaka*; Nagai, Takayuki; Niibori, Yuichi*; Watanabe, Masayuki; et al.
Introduction to Dismantling and Decommissioning Chemistry, 251 Pages, 2024/09
This book focuses on the dismantling and decommissioning of nuclear facilities and reactors that have suffered severe accidents. In Part 1, we introduce basic aspects ranging from fuel chemistry, analytical chemistry, radiation chemistry, corrosion, and decontamination chemistry to waste treatment and disposal. Then, Part 2 covers the chemistry involved in the decommissioning of various nuclear facilities, and discusses what chemical approaches are necessary and possible for the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Plants, how decommissioning should be carried out, and what kind of research and development and also human resource development are required for this.
Ichikawa, Yudai; Fujita, Manami; Hasegawa, Shoichi; Imai, Kenichi*; Nanamura, Takuya; Naruki, Megumi; Sato, Susumu; Sako, Hiroyuki; Tamura, Hirokazu; Tanida, Kiyoshi; et al.
Progress of Theoretical and Experimental Physics (Internet), 2024(9), p.091D01_1 - 091D01_13, 2024/09
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Shibata, Motoki*; Nakanishi, Yohei*; Arakawa, Masato*; Takenaka, Mikihito*; Kida, Takumitsu*; Tokumitsu, Katsuhisa*; Tanaka, Ryo*; et al.
Langmuir, 40(30), p.15758 - 15766, 2024/07
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Kawano, Masayuki*; Morimitsu, Yuma*; Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Macromolecules, 57(14), p.6625 - 6633, 2024/07
Times Cited Count:0 Percentile:0.00(Polymer Science)Watakabe, Tomoyoshi; Yamamoto, Tomohiko; Okamura, Shigeki; Miyazaki, Masashi; Miyagawa, Takayuki; Uchita, Masato*; Hirayama, Tomoyuki*; Somaki, Takahiro*; Yukawa, Masaki*; Fukasawa, Tsuyoshi*; et al.
Proceedings of ASME 2024 Pressure Vessels & Piping Conference (PVP 2024) (Internet), 10 Pages, 2024/07
To secure the seismic safety of the thin-walled mechanical components and piping under a severe design earthquake level, employing a three-dimensional (3D) seismic isolation system has been planned in a sodium-cooled fast reactor. The development results of the 3D isolation system have been reported in previous papers so far. Its update is reported in Part 7 to Part 9. Part 7 describes the overview of the development, the test plan of the isolation system in the assembled state of each element, and the performance of individual isolation elements. In part 8, the performance of the isolation device that each element was assembled into was investigated through loading tests. Part 9 reports analytical studies by an analysis model validated based on the insight of the test results.
Tada, Kenichi; Yamamoto, Akio*; Kunieda, Satoshi; Konno, Chikara; Kondo, Ryoichi; Endo, Tomohiro*; Chiba, Go*; Ono, Michitaka*; Tojo, Masayuki*
Journal of Nuclear Science and Technology, 61(6), p.830 - 839, 2024/06
Times Cited Count:8 Percentile:89.79(Nuclear Science & Technology)Nuclear data processing code is important to connect evaluated nuclear data libraries and radiation transport codes. The nuclear data processing code FRENDY version 1 was released in 2019 to generate ACE formatted cross section files with simple input data. After we released FRENDY version 1, many functions were developed, e.g., neutron multi-group cross section generation, explicit consideration of the resonance interference effect among different nuclides in a material, consideration of the resonance upscattering, ACE file perturbation, and modification of ENDF-6 formatted file. FRENDY version 2 was released including these new functions. It generates GENDF and MATXS formatted neutron multi-group cross section files from an ACE formatted cross section file or an evaluated nuclear data file. This paper explains the features of the new functions implemented in FRENDY version 2 and the verification of the neutron multigroup cross section generation function of this code.
Nakanishi, Yohei*; Shibata, Motoki*; Sawada, Satoshi*; Kondo, Hiroaki*; Motokawa, Ryuhei; Kumada, Takayuki; Yamamoto, Katsuhiro*; Mita, Kazuki*; Miyazaki, Tsukasa*; Takenaka, Mikihito*
Polymer, 306, p.127209_1 - 127209_7, 2024/06
Times Cited Count:2 Percentile:56.40(Polymer Science)Nishino, Hiroyuki; Kurisaka, Kenichi; Naruto, Kenichi*; Gondai, Yoji; Yamamoto, Masaya
Mechanical Engineering Journal (Internet), 11(2), p.23-00409_1 - 23-00409_15, 2024/04
The effectiveness evaluation of safety measures against severe accident is necessary for restart of experimental sodium-cooled fast reactor Joyo in Japan. These safety measures correspond to those in defense-in-depth (DiD) level 4. In the previous study, a level-1 probabilistic risk assessment (PRA) at power was performed to calculate frequencies of the accident sequences of failure of safety measures in DiD level 1 to 3, to identify dominant accident sequence groups, and to identify dominant accident sequence for selecting important accident sequences in each accident sequence group which are needed for implementing the effectiveness evaluation of safety measures in DiD level 4. Based on this, the present study implemented level-1 PRA at power to show quantitatively reduction of those occurrence frequency by the safety measure in the DiD level 4. As the result, the frequency of each accident sequence group decreased significantly, and total frequency of the accident sequence groups decreased to about 1E-6 /reactor-year which is about 1/1000 times the one estimated in the previous study. The protected loss of heat sink was the largest contributor in all the accident groups and a dominant accident sequence in each accident group was also identified in this study.
Yamamoto, Tomohiko; Watakabe, Tomoyoshi; Miyazaki, Masashi; Okamura, Shigeki; Miyagawa, Takayuki; Yokoi, Shinobu*; Fukasawa, Tsuyoshi*; Fujita, Satoshi*
Mechanical Engineering Journal (Internet), 11(2), p.23-00393_1 - 23-00393_21, 2024/04
Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Saha, P. K.; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; et al.
Journal of Physics; Conference Series, 2687(7), p.072005_1 - 072005_7, 2024/01
Times Cited Count:0 Percentile:0.00(Physics, Atomic, Molecular & Chemical)Longitudinal phase space tomography is an effective measurement tool for acquiring the longitudinal phase space distribution. For the J-PARC synchrotrons, tomography, which can take into account the beam dynamics such as longitudinal space charge effect and nonlinearity, is desired, as the beam power increases. In this study, for the J-PARC synchrotron, the CERN's tomography, which employs the hybrid algorithm that can consider the beam dynamics for reconstruction, is introduced and benchmarked. The benchmark results show that the CERN's tomography has the ability to measure the longitudinal phase space distribution accurately, in the high-power beam operation at the J-PARC synchrotrons.