Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Calculation of nuclear core parameters for HTTR; Report of summer holiday practical training 2021

Isogawa, Hiroki*; Naoi, Motomasa*; Yamasaki, Seiji*; Ho, H. Q.; Katayama, Kazunari*; Matsuura, Hideaki*; Fujimoto, Nozomu*; Ishitsuka, Etsuo

JAEA-Technology 2022-015, 18 Pages, 2022/07

JAEA-Technology-2022-015.pdf:1.37MB

As a summer holiday practical training 2021, the impact of 10 years long-term shutdown on critical control rod position of the HTTR and the delayed neutron fraction ($$beta$$$$_{rm eff}$$) of the VHTRC-1 core were investigated using Monte-Carlo MVP code. As a result, a long-term shutdown of 10 years caused the critical control rods of the HTTR to withdraw about 4.0$$pm$$0.8 cm compared to 3.9 cm in the experiment. The change in critical control rods position of the HTTR is due to the change of some fission products such as $$^{241}$$Pu, $$^{241}$$Am, $$^{147}$$Pm, $$^{147}$$Sm, $$^{155}$$Gd. Regarding the $$beta$$$$_{rm eff}$$ calculation of the VHTRC-1 core, the $$beta$$$$_{rm eff}$$ value is underestimate of about 10% in comparison with the experiment value.

Journal Articles

Three-dimensional electronic structures and the metal-insulator transition in Ruddlesden-Popper iridates

Yamasaki, Atsushi*; Fujiwara, Hidenori*; Tachibana, Shoichi*; Iwasaki, Daisuke*; Higashino, Yuji*; Yoshimi, Chiaki*; Nakagawa, Koya*; Nakatani, Yasuhiro*; Yamagami, Kohei*; Aratani, Hidekazu*; et al.

Physical Review B, 94(11), p.115103_1 - 115103_10, 2016/11

AA2016-0587.pdf:2.55MB

 Times Cited Count:17 Percentile:61.21(Materials Science, Multidisciplinary)

In this study, we systematically investigate three-dimensional(3D) momentum-resolved electronic structures of Ruddlesden-Popper-type iridium oxides Sr$$_{n+1}$$Ir$$_{n}$$O$$_{3n+1}$$ using soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES). Our results provide direct evidence of an insulator-to-metal transition that occurs upon increasing the dimensionality of the IrO$$_{2}$$-plane structure. This transition occurs when the spin-orbit-coupled $$j_{eff}$$ = 1/2 band changes its behavior in the dispersion relation and moves across the Fermi energy. By scanning the photon energy over 350 eV, we reveal the 3D Fermi surface in SrIrO$$_{3}$$ and $$k_{z}$$-dependent oscillations of photoelectron intensity in Sr$$_{3}$$Ir$$_{2}$$O$$_{7}$$. To corroborate the physics deduced using low-energy ARPES studies, we propose to utilize SX-ARPES as a powerful complementary technique, as this method surveys more than one whole Brillouin zone and provides a panoramic view of electronic structures.

2 (Records 1-2 displayed on this page)
  • 1