Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 722

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Utilization of gamma ray irradiation at the WASTEF Facility

Sano, Naruto; Yamashita, Naoki; Watanabe, Masaya; Tsukada, Manabu*; Hoshino, Kazutoyo*; Hirai, Koki; Ikegami, Yuta*; Tashiro, Shinsuke; Yoshida, Ryoichiro; Hatakeyama, Yuichi; et al.

JAEA-Technology 2023-029, 36 Pages, 2024/03

JAEA-Technology-2023-029.pdf:2.47MB

At the Waste Safety Testing Facility (WASTEF), the gamma ray irradiation device "Gamma Cell 220" was relocated from the 4th research building of the Nuclear Science Research Institute in FY2019, and the use of gamma ray irradiation has begun. Initially, Fuel Cycle Safety Research Group, Fuel Cycle Safety Research Division, Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness, the owner of this device, conducted the tests as the main user, but since 2022, other users, including those outside the organization, have started using it. The gamma ray irradiation device "Gamma Cell 220" is manufactured by Nordion International Inc. in Canada. Since it was purchased in 1989, the built-in 60Co radiation source has been updated once, and safety research related to nuclear fuel cycles, etc. It is still used for this purpose to this day. This report summarizes the equipment overview of the gamma ray irradiation device "Gamma Cell 220", its permits and licenses at WASTEF, usage status, maintenance and inspection, and future prospects.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Koike, Yuko; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; Nagai, Shinji; et al.

JAEA-Review 2023-046, 164 Pages, 2024/03

JAEA-Review-2023-046.pdf:4.2MB

The Nuclear Fuel Cycle Engineering Laboratories conducts environmental radiation monitoring around the reprocessing plant in accordance with the "Safety Regulations for Reprocessing Plant of JAEA, Part IV: Environmental Monitoring". This report summarizes the results of environmental radiation monitoring conducted during the period from April 2022 to March 2023 and the results of dose calculations for the surrounding public due to the release of radioactive materials into the atmosphere and ocean. In the results of the above environmental radiation monitoring, many items were affected by radioactive materials emitted from the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, Incorporated (changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016), which occurred in March 2011. Also included as appendices are an overview of the environmental monitoring plan, an overview of measurement methods, measurement results and their changes over time, meteorological statistics results, radioactive waste release status, and an evaluation of the data which deviated of the normal range.

Journal Articles

Atomic position and the chemical state of an active Sn dopant for Sn-doped $$beta$$-Ga$$_{2}$$O$$_{3}$$(001)

Tsai, Y. H.*; Kobata, Masaaki; Fukuda, Tatsuo; Tanida, Hajime; Kobayashi, Toru; Yamashita, Yoshiyuki*

Applied Physics Letters, 124(11), p.112105_1 - 112105_5, 2024/03

Journal Articles

Quantitative measurement of figure of merit for transverse thermoelectric conversion in Fe/Pt metallic multilayers

Yamazaki, Takumi*; Hirai, Takamasa*; Yagi, Takashi*; Yamashita, Yuichiro*; Uchida, Kenichi*; Seki, Takeshi*; Takanashi, Koki

Physical Review Applied (Internet), 21(2), p.024039_1 - 024039_11, 2024/02

 Times Cited Count:0

Journal Articles

Hierarchical deformation heterogeneity during L$"u$ders band propagation in an Fe-5Mn-0.1C medium Mn steel clarified through ${it in situ}$ scanning electron microscopy

Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Yang, Z.*; Varanasi, R. S.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.

Tetsu To Hagane, 110(3), p.205 - 216, 2024/02

Journal Articles

Martensitic transformation behavior of Fe-Ni-C alloys monitored by ${it in-situ}$ neutron diffraction during cryogenic cooling

Yamashita, Takayuki*; Harjo, S.; Kawasaki, Takuro; Morooka, Satoshi; Gong, W.; Fujii, Hidetoshi*; Tomota, Yo*

ISIJ International, 64(2), p.192 - 201, 2024/01

JAEA Reports

Optimized phase-field modeling using a modified conservative Allen-Cahn equation for two-phase flows

Sugihara, Kenta; Onodera, Naoyuki; Idomura, Yasuhiro; Yamashita, Susumu

JAEA-Research 2023-006, 47 Pages, 2023/10

JAEA-Research-2023-006.pdf:3.28MB

This report presents a new surface capturing method based on the phase field model for gas-liquid two-phase flows simulation. In the conventional phase field model, the interface correction strength parameter was determined from the maximum flow velocity in the computational domain, but because the interface correction was applied uniformly to the entire space, it was also applied to locations that did not require correction. In the new method, the phase field parameter or the intensity of the phase field model is extended to have a spatial distribution, allowing us to set the optimal parameters depending on the local flow velocity fields. We also propose a method to derive the optimal phase field parameter based on systematic parameter scans using error analysis of the interface advection test and bubble rising calculations. Through benchmark tests of gas-liquid two-phase flows, the proposed model is verified, and it is shown that the proposed model has higher accuracy than the conventional phase field model.

Journal Articles

The Hydrogen-bond network in sodium chloride tridecahydrate; Analogy with ice VI

Yamashita, Keishiro*; Nakayama, Kazuya*; Komatsu, Kazuki*; Ohara, Takashi; Munakata, Koji*; Hattori, Takanori; Sano, Asami; Kagi, Hiroyuki*

Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 79(5), p.414 - 426, 2023/10

 Times Cited Count:0 Percentile:0.02(Chemistry, Multidisciplinary)

The structure of a recently-found hyperhydrated form of sodium chloride, NaCl$$cdot$$ 13H(D)$$_{2}$$O, has been determined by ${it in situ}$ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. Here, we present an example for further insights into a hydrogen-bond network containing ionic species.

Journal Articles

Summary results of subsidy program for the "Project of Decommissioning, Contaminated Water and Treated Water Management (Development of Analysis and Estimation Technologies for Characterization of Fuel Debris (Development of Estimation Technologies of RPV Damaged Condition, etc.) in 2022JFY

Yamashita, Takuya; Shimomura, Kenta; Nagae, Yuji; Yamaji, Akifumi*; Mizokami, Shinya; Mitsugi, Takeshi; Koyama, Shinichi

Hairo, Osensui, Shorisui Taisaku Jigyo Jimukyoku Homu Peji (Internet), 53 Pages, 2023/10

JAEA performed the subsidy program for the "Project of Decommissioning, Contaminated Water and Treated Water Management (Development of Analysis and Estimation Technologies for Characterization of Fuel Debris (Development of Estimation Technologies of RPV Damaged Condition, etc.) in 2022JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning, Contaminated Water and Treated Water Management.

Journal Articles

Numerical simulation method using a Cartesian grid for oxidation of core materials under steam-starved conditions

Yamashita, Susumu; Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 60(9), p.1029 - 1045, 2023/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Estimation of external dose for wild Japanese macaques captured in Fukushima prefecture; Decomposition of electron spin resonance spectrum

Mitsuyasu, Yusuke*; Oka, Toshitaka; Takahashi, Atsushi*; Kino, Yasushi*; Okutsu, Kenichi*; Sekine, Tsutomu*; Yamashita, Takuma*; Shimizu, Yoshinaka*; Chiba, Mirei*; Suzuki, Toshihiko*; et al.

Radiation Protection Dosimetry, 199(14), p.1620 - 1625, 2023/09

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

We have been conducting dose assessments for Japanese macaques captured in Fukushima to reveal radiobiological effects on the low-dose expose animals. To accurately determine the external exposure dose, it is desirable to examine the analysis of the CO$$_{2}^{-}$$ radical intensity. We examined ESR spectra of teeth of 10 macaques captured in Fukushima by two spectrum-decomposition algorithms.

Journal Articles

Development of a numerical simulation method for air cooling of fuel debris by JUPITER

Yamashita, Susumu; Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 10(4), p.22-00485_1 - 22-00485_25, 2023/08

A detailed evaluation for air cooling of fuel debris in actual reactors will be essential in fuel debris retrieval under dry conditions. To understand the heat transfer in and around fuel debris, which is assumed as a porous medium in the primary containment vessel (PCV) mechanistically, we newly applied the porous medium model to the multiphase and multicomponent computational fluid dynamics code named JUPITER (JAEA Utility Program for Interdisciplinary Thermal-hydraulics Engineering and Research). We applied the Darcy-Brinkman model as for the porous medium model. This model has high compatibility with JUPITER because it can treat both a pure fluid and a porous medium phase simultaneously in the same manner as the one-fluid model in multiphase flow simulation. We addressed the case of natural convection with a high-velocity flow standing out nonlinear effects by implementing the Forchheimer model, including the term of the square of the velocity as a nonlinear effect to the momentum transport equation of JUPITER. We performed some simple verification and validation simulations, such as the natural convection simulation in a square cavity and the natural convective heat transfer experiment with the porous medium, to confirm the validity of the implemented model. We confirmed that the result of JUPITER agreed well with these simulations and experiments. In addition, as an application of the updated JUPITER, we performed the preliminary simulation of air cooling of fuel debris in the condition of the Fukushima Daiichi Nuclear Power Station unit 2 including the actual core materials. As a result, JUPITER calculated the temperature and velocity field stably in and around the fuel debris inside the PCV. Therefore, JUPITER has the potential to estimate the detailed and accurate thermal-hydraulics behaviors of fuel debris.

Journal Articles

Comprehensive analysis and evaluation of Fukushima Daiichi Nuclear Power Station Unit 3

Yamashita, Takuya; Honda, Takeshi*; Mizokami, Masato*; Nozaki, Kenichiro*; Suzuki, Hiroyuki*; Pellegrini, M.*; Sakai, Takeshi*; Sato, Ikken; Mizokami, Shinya*

Nuclear Technology, 209(6), p.902 - 927, 2023/06

 Times Cited Count:2 Percentile:90.12(Nuclear Science & Technology)

Journal Articles

Development of numerical simulation method of natural convection around heated porous medium by using JUPITER

Uesawa, Shinichiro; Yamashita, Susumu; Shibata, Mitsuhiko; Yoshida, Hiroyuki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

For contaminated water management in decommissioning Fukushima Daiichi Nuclear Power Stations, reduction in water injection, intermittent injection water and air cooling are considered. However, since there are uncertainties of fuel debris in the PCV, it is necessary to examine and evaluate optimal cooling methods according to the distribution state of the fuel debris and the progress of the fuel debris retrieval work in advance. We have developed a method for estimating the thermal behavior in the air cooling, including the influence of the position, heat generation and the porosity of fuel debris. Since a large-scale thermal-hydraulics analysis of natural convection is necessary for the method, JUPITER developed independently by JAEA is used. It is however difficult to perform the large-scale thermal-hydraulics analysis with JUPITER by modeling the internal structure of the debris which may consist of a porous medium. Therefore, it is possible to analyze the heat transfer of the porous medium by adding porous models to JUPITER. In this study, we report the validation of JUPITER applied the porous model and discuss which heat transfer models are most effective in porous models such as series, parallel and geometric mean models. To obtain validation data of JUPITER for the natural convective heat transfer analysis around the porous medium, we performed the heat transfer and the flow visualization experiments of the natural convection in the experimental system including the porous medium. In the comparison between the experiment and the numerical analysis with each model, the numerical result with the geometric mean model was the closest of the models to the experimental results. However, the numerical results of the temperature and the velocity were overestimated for those experimental results. In particular, the temperature near the interface between the porous medium and air was more overestimated.

Journal Articles

Double diffusive dissolution model of UO$$_{2}$$ pellet in molten Zr cladding

Ito, Ayumi*; Yamashita, Susumu; Tasaki, Yudai; Kakiuchi, Kazuo; Kobayashi, Yoshinao*

Journal of Nuclear Science and Technology, 60(4), p.450 - 459, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2021

Nakada, Akira; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Futagawa, Kazuo; Nemoto, Masashi; Tobita, Keiji; Yamada, Ryohei*; Uchiyama, Rei; Yamashita, Daichi; et al.

JAEA-Review 2022-078, 164 Pages, 2023/03

JAEA-Review-2022-078.pdf:2.64MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2021 to March 2022. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Collection of strength characteristic data used for analysis evaluation in reactor pressure vessel and in-core structures in accident

Shimomura, Kenta; Yamashita, Takuya; Nagae, Yuji

JAEA-Data/Code 2022-012, 270 Pages, 2023/03

JAEA-Data-Code-2022-012.pdf:38.25MB

In a light water reactor, which is a commercial nuclear power plant, a severe accident such as loss of cooling function in the reactor pressure vessel (RPV) and exposure of fuel rods due to a drop in the water level in the reactor can occur when a trouble like loss of all AC power occurs. In the event of such a severe accident, the RPV may be damaged due to in-vessel conditions (temperature, molten materials, etc.) and leakage of radioactive materials from the reactor may occur. Verification and estimation of the process of RPV damage, molten fuel debris spillage and expansion, etc. during accident progression will provide important information for decommissioning work. Possible causes of RPV failure include failure due to loads and restraints applied to the RPV substructure (mechanical failure), failure due to the current eutectic state of low-melting metals and high-melting oxides with the RPV bottom members (failure due to inter-material reactions), and failure near the melting point of the structural members at the RPV bottom. Among the failure factors, mechanical failure is verified by numerical analysis (thermal hydraulics and structural analysis). When conducting such a numerical analysis, the heat transfer properties (thermal conductivity, specific heat, density) and material properties (thermal conductivity, Young's modulus, Poisson's ratio, tensile, creep) of the materials (zirconium, boron carbide, stainless steel, nickel-based alloy, low alloy steel, etc.) constituting the RPV and in-core structures to near the melting point are required to evaluate the creep failure of the RPV. In this document, we compiled data on the properties of base materials up to the melting point of each material constituting the RPV and in-core structures, based on published literature. In addition, because welds exist in the RPV and in-core structures, the data on welds are also included in this report, although they are limited.

Journal Articles

Neutron stress measurement of W/Ti composite in cryogenic temperatures using time-of-flight method

Nishida, Masayuki*; Harjo, S.; Kawasaki, Takuro; Yamashita, Takayuki*; Gong, W.

Quantum Beam Science (Internet), 7(1), p.8_1 - 8_15, 2023/03

Journal Articles

Benchmark simulation code for the thermal-hydraulics design tool of the accelerator-driven system; Validation and benchmark simulation of flow behavior around the beam window

Yamashita, Susumu; Kondo, Nao; Sugawara, Takanori; Monji, Hideaki*; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 22 Pages, 2023/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To confirm the validity of the thermal-hydraulics design tool based on the Ansys Fluent, we used a detailed computational fluid dynamics code named JAEA Utility Program for Interdisciplinary Thermal-hydraulics Engineering and Research (JUPITER) for the thermal-hydraulics around the beam window (BW) of the Accelerator-Driven System (ADS). The Fluent uses the Reynolds-Averaged Navier-Stokes (RANS) model and can quickly calculate the turbulent flow around the BW as a BW design tool. At first, we compared the results of JUPITER with the experimental results using a mock-up BW system in water to confirm the validity of JUPITER. As a result, we confirmed that numerical results are in good agreement with the experimental results. Thus, we showed that JUPITER could be used as a benchmark code. We also performed a benchmark simulation for the Fluent calculation using validated JUPITER to show the applicability of JUPITER as an alternative of experiments. As a result, the mean values around the BW agreed with each other, e.g., the mean velocity profile for stream and horizontal directions. Therefore, we confirmed that JUPITER showed a good performance in validating the thermal-hydraulics design tool as a fluid dynamics solver. Moreover, Fluent has enough accuracy as a thermal-hydraulics design tool for the ADS.

Journal Articles

Gas-liquid two-phase flow analysis using multi-phase field method

Sugihara, Kenta; Onodera, Naoyuki; Idomura, Yasuhiro; Yamashita, Susumu

Dai-36-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/12

The conventional Allen-Cahn type multi-phase field method was modified to conserve not only the sum of the masses of all phases but also the mass of each phase. The interface advection calculations within a two-dimensional rotational velocity field were performed as a verification problem, and the conservation was successfully achieved. The proposed method was used to calculate the horizontally aligned pair of bubbles rising, and it was found that the bouncing phenomenon between bubbles can be calculated at 1/50 resolution of the high-resolution calculation by Zhang et al. using the volume of fluid method.

722 (Records 1-20 displayed on this page)