Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium (Joint research)

Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Kataoka, Takahiro*; Yamato, Keiko*; Nishiyama, Yuichi*

JAEA-Research 2013-005, 60 Pages, 2013/06

JAEA-Research-2013-005.pdf:4.49MB

Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. From 2007 to 2011, the following results were obtained. (1) Literature on effects of radon for the low-dose range was surveyed to determine the present tasks. (2) The first Japanese large-scale facility was developed for radon inhalation experiments with small animals. (3) Relationships between radon concentration and inhalation time were widely examined to understand the change in antioxidative functions due to radon, which are the most basic parameters. (4) Inhibitory effects of radon on oxidative damages were observed using model mice with reactive oxygen- or free radical-related diseases like alcohol-induced oxidative damages and type I diabetes. (5) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon was examined and the model for calculation of absorbed doses for organs and tissues was obtained.

Journal Articles

Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation

Kataoka, Takahiro*; Sakoda, Akihiro*; Yoshimoto, Masaaki*; Nakagawa, Shinya*; Toyota, Teruaki*; Nishiyama, Yuichi*; Yamato, Keiko*; Ishimori, Yuu; Kawabe, Atsushi*; Hanamoto, Katsumi*; et al.

Radiation Protection Dosimetry, 146(1-3), p.360 - 363, 2011/07

 Times Cited Count:6 Percentile:44.28(Environmental Sciences)

Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl$$_{4}$$) administration. Results showed that radon inhalation alleviates CCl$$_{4}$$-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases.

2 (Records 1-2 displayed on this page)
  • 1