Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantum dynamics of hydrogen in the iron-based superconductor LaFeAsO$$_{0.9}$$D$$_{0.1}$$ measured with inelastic neutron spectroscopy

Yamaura, Junichi*; Hiraka, Haruhiro*; Iimura, Soshi*; Muraba, Yoshinori*; Bang, J.*; Ikeuchi, Kazuhiko*; Nakamura, Mitsutaka; Inamura, Yasuhiro; Honda, Takashi*; Hiraishi, Masatoshi*; et al.

Physical Review B, 99(22), p.220505_1 - 220505_6, 2019/06

AA2019-0126.pdf:0.9MB

 Times Cited Count:1 Percentile:10.83(Materials Science, Multidisciplinary)

Inelastic neutron scattering was performed for an iron-based superconductor, where most of D (deuterium) replaces oxygen, while a tiny amount goes into interstitial sites. By first-principle calculation, we characterize the interstitial sites for D (and for H slightly mixed) with four equivalent potential minima. Below the superconducting transition temperature Tc = 26 K, new excitations emerge in the range 5-15 meV, while they are absent in the reference system LaFeAsO$$_{0.9}$$F$$_{0.1}$$. The strong excitations at 14.5 meV and 11.1 meV broaden rapidly around 15 K and 20 K, respectively, where each energy becomes comparable to twice of the superconducting gap. The strong excitations are ascribed to a quantum rattling, or a band motion of hydrogen, which arises only if the number of potential minima is larger than two.

Journal Articles

Gapless magnetic excitation in a heavily electron-doped antiferromagnetic phase of LaFeAsO$$_{0.5}$$D$$_{0.5}$$

Tamatsukuri, Hiromu*; Hiraka, Haruhiro*; Ikeuchi, Kazuhiko*; Iimura, Soshi*; Muraba, Yoshinori*; Nakamura, Mitsutaka; Sagayama, Hajime*; Yamaura, Junichi*; Murakami, Yoichi*; Kuramoto, Yoshio*; et al.

Physical Review B, 98(17), p.174415_1 - 174415_6, 2018/11

AA2018-0436.pdf:0.85MB

 Times Cited Count:2 Percentile:16.65(Materials Science, Multidisciplinary)

Magnetic excitations in a heavily electron-doped antiferromagnet, LaFeAsO$$_{0.5}$$D$$_{0.5}$$, have been investigated using powder inelastic neutron scattering. Unlike other parent compounds of the iron-based superconductors, the magnetic excitation gap in LaFeAsO$$_{0.5}$$D$$_{0.5}$$ was not detected down to the lowest measured temperature of 4 K. This result can be understood as a result of quasi-isotropy within the ab plane, which is consistent with the band calculation result that the $$d_{xy}$$ orbital plays the dominant role in the magnetism of LaFeAsO$$_{0.5}$$H$$_{0.5}$$. In addition, the intensities of the magnetic excitations in this phase are much stronger than those in nondoped LaFeAsO. Even in the paramagnetic phase, the magnetic excitation in LaFeAsO$$_{0.5}$$D$$_{0.5}$$ persists. These results corroborate recent studies showing that the electron doping enhances the localized nature in this system.

Journal Articles

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.

Nature Physics, 10(4), p.300 - 303, 2014/04

 Times Cited Count:94 Percentile:96.38(Physics, Multidisciplinary)

Journal Articles

Orbital magnetism in Cd$$_2$$Os$$_2$$O$$_7$$ studied by X-ray magnetic circular dichroism

Matsuda, Yasuhiro*; Her, J.-L.*; Michimura, Shinji*; Inami, Toshiya; Suzuki, Motohiro*; Kawamura, Naomi*; Mizumaki, Masaichiro*; Kindo, Koichi*; Yamaura, Junichi*; Hiroi, Zenji*

Physical Review B, 84(17), p.174431_1 - 174431_5, 2011/11

 Times Cited Count:20 Percentile:66.65(Materials Science, Multidisciplinary)

X-ray magnetic circular dichroism (XMCD) at the $$L$$$$_{2,3}$$-edge of Os has been investigated in the antiferromagneticphase of Cd$$_2$$Os$$_2$$O$$_7$$, which exhibits a metal-insulator transition around 227 K. According to the sum rule, the XMCD spectra at 10 and 37 T clearly show that the ratio between the orbital magnetic moment ($$m_{rm L}$$) and spinmagnetic moment ($$m_{rm S}$$) is $$m_{rm L}/m_{rm S} = 0.16 pm 0.02$$, and that $$m_{rm L}$$ and $$m_{rm S}$$ are coupled in parallel ($$m_{rm L}parallel m_{rm S}$$). These phenomena are unusual in that the expected ground state of Os$$^{5+}$$ (5$$d^3$$) is an orbital singlet in a cubic crystal field, and $$m_{rm L}$$and $$m_{rm S}$$ should be antiparallel for a less than half-filled system in accordance with Hund's third rule. It is likely that the spin-orbit coupling is important for explaining the observed orbital magnetism.

Journal Articles

Electrical and magnetic properties of a single crystal UCu$$_2$$Si$$_2$$

Matsuda, Tatsuma; Haga, Yoshinori; Ikeda, Shugo; Galatanu, A.; Yamamoto, Etsuji; Shishido, Hiroaki*; Yamada, Mineko*; Yamaura, Junichi*; Hedo, Masato*; Uwatoko, Yoshiya*; et al.

Journal of the Physical Society of Japan, 74(5), p.1552 - 1556, 2005/05

 Times Cited Count:21 Percentile:70.75(Physics, Multidisciplinary)

We have succeeded in growing a high-quality single crystal of UCu$$_2$$Si$$_2$$ with the tetragonal structure by the Sn-flux method and measured the electrical resistivity, magnetic susceptibility, magnetization and specific heat. UCu$$_2$$Si$$_2$$ is found to order antiferromagnetically below $$T_{rm N}$$ = 106 K, and follows a successive ferromagnetic ordering at $$T_{rm C}$$ = 100 K. The magnetic properties are highly anisotropic, reflecting the crystal structure. An easy-axis of magnetization is found to be the [001] direction ($$c$$-axis) both in the antiferromagnetic and ferromagnetic phases, while the [100] direction ($$a$$-axis) corresponds to the hard-axis in magnetization. The magnetization curve in the antiferromagnetic phase indicates a clear metamagnetic transition at a low field of about 1 kOe and changes smoothly into a ferromagnetic magnetization curve below $$T_{rm C}$$ = 100 K. The saturation moment is determined as 1.75$$mu_{rm B}$$/U at 2 K. The electronic specific heat coefficient is also determined as 20 mJ/K$$^2$$$$cdot$$mol.

Journal Articles

Electrical properties of neutron-irradiated oxygen potential sensors using stabilized zirconia solid electrolyte

*; Endo, Yasuichi; Yamaura, Takayuki; Hoshiya, Taiji; Niimi, Motoji; Saito, Junichi; ; Ooka, Norikazu; Kobiyama, M.*

Journal of Nuclear Materials, 258-263, p.2041 - 2045, 1998/00

 Times Cited Count:6 Percentile:50.34(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

Neutron irradiation characteristic tests of oxygen sensors using zirconia solid electrolyte

*; Endo, Yasuichi; Yamaura, Takayuki; Niimi, Motoji; Hoshiya, Taiji; Saito, Junichi; ; Ooka, Norikazu; *

JAERI-Research 97-028, 46 Pages, 1997/03

JAERI-Research-97-028.pdf:2.49MB

no abstracts in English

7 (Records 1-7 displayed on this page)
  • 1