Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.
Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02
Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.
Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09
Seki, Akiyuki; Yoshikawa, Masanori; Nishinomiya, Ryota*; Okita, Shoichiro; Takaya, Shigeru; Yan, X.
Nuclear Technology, 210(6), p.1003 - 1014, 2024/06
Times Cited Count:0 Percentile:0.05(Nuclear Science & Technology)Two types of deep neural network (DNN) systems have been constructed with the intent to assist safety operation of a nuclear power plant. One is a surrogate system (SS) that can estimate physical quantities of a nuclear power plant in a computational time of several orders less than a physical simulation model. The other is an abnormal situation identification system (ASIS) that can estimate the state of the disturbance causing an anomaly from physical quantities of a nuclear power plant. Both systems are trained and tested using data obtained from the analytical code for incore and plant dynamics (ACCORD), which reproduces the steady and dynamic behavior of the actual high Temperature engineering test reactor (HTTR) under various scenarios. The DNN models are built by adjusting, the main hyperparameters. Through these procedures, these systems are shown able to perform with a high degree of accuracy.
Takaya, Shigeru; Seki, Akiyuki; Yoshikawa, Masanori; Sasaki, Naoto*; Yan, X.
Mechanical Engineering Journal (Internet), 11(2), p.23-00408_1 - 23-00408_11, 2024/04
Enhancing the ability to manage abnormal situations is important for improvement of the safety of nuclear power plants. It is necessary to investigate potential risks thoroughly in advance, and prepare countermeasures against the identified risks. In case of an occurrence of an abnormal situation, plant operators are required to recognize the plant situation promptly and select a suitable countermeasure. This study develops a novel plant operator support system designed not only to estimate details of anomalies in a plant but also propose countermeasures adaptively by employing several AI technologies of deep neural network and reinforcement learning. The design and performance of the proposed system is illustrated using High Temperature engineering Test Reactor operated in Japan Atomic Energy Agency.
Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
no abstracts in English
Lechner, S.*; Miyagi, Takayuki*; Xu, Z. Y.*; Bissell, M. L.*; Blaum, K.*; Cheal, B.*; Devlin, C. S.*; Garcia Ruiz, R. F.*; Ginges, J. S. M.*; Heylen, H.*; et al.
Physics Letters B, 847, p.138278_1 - 138278_9, 2023/12
Times Cited Count:0 Percentile:0.02(Astronomy & Astrophysics)no abstracts in English
Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:1 Percentile:59.27(Astronomy & Astrophysics)Gamma decays were observed in Ca and Ca following quasi-free one-proton knockout reactions from Sc. For Ca, a ray transition was measured to be 1456(12) keV, while for Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the and orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic Ca and potentially drives the dripline of Ca isotopes to Ca or even beyond.
Kawabori, Tatsuru*; Watanabe, Masashi; Imai, Yoshiyuki; Ueta, Shohei; Yan, X.; Mizoshiri, Mizue*
Applied Physics A, 129(7), p.498_1 - 498_9, 2023/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)We investigated a potential of femtosecond laser sintering of silicon carbide (SiC) using the nanoparticles in air. A SiC nanoparticle ink including polyvinylpyrrolidone and ethylene glycol exhibited intense absorption by SiC nanoparticles at the wavelength of 780 nm. The whole of the sintered film patterns from the surface to the bottom underwent significant oxidation at a scanning speed of 1 mm/s, suggesting that the excessive energy irradiation generated silicon oxides. In contrast, the patterns fabricated by laser scanning at a raster pitch of 30 m at which a sintered area was observed at a scanning speed of 5 mm/s, exhibited no significant difference in oxidation of the raw SiC nanoparticles except for the surfaces from 1.72 m. These results indicate that the irradiation of femtosecond laser pulses generated the sintered SiC patterns without additional atmospheric oxidation of the raw materials because of its low heat accumulation. In additions, the dispersant of polyvinylpyrrolidone and ethylene glycol did not affect the sintering by an X-ray photoelectron spectroscopy. This vacuum-free direct printing technique has the potential for additive manufacturing.
Mori, Takashi*; Shimada, Takahiro*; Kai, Satoru*; Otani, Akihito*; Yamamoto, Tomohiko; Yan, X.
Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 8 Pages, 2023/07
Fang, Y.*; Kong, L.*; Wang, R.*; Zhang, Z.*; Li, Z.*; Wu, Y.*; Bu, K.*; Liu, X.*; Yan, S.*; Hattori, Takanori; et al.
Materials Today Physics (Internet), 34, p.101083_1 - 101083_7, 2023/05
Times Cited Count:1 Percentile:44.21(Materials Science, Multidisciplinary)The layered van der Waals halides are particularly sensitive to external pressure, suggesting a feasible route to pinpoint their structure with extraordinary behavior. However, a very sensitive pressure response usually lead to a detrimental phase transition and/or lattice distortion, making the approach of materials manipulation in a continuous manner remain challenging. Here, the extremely weak interlayer coupling and high tunability of layered RhI crystals are observed. A pressure-driven phase transition occurs at a moderate pressure of 5 GPa, interlinking to a change of layer stack mode. Strikingly, such a phase transition does not affect the tendency of quasi-linear bandgap narrowing, and a metallization with an ultra-broad tunability of 1.3 eV redshift is observed at higher pressures. Moreover, the carrier concentration increases by 4 orders of magnitude at 30 GPa, and the photocurrent enhances by 5 orders of magnitude at 7.8 GPa. These findings create new opportunities for exploring, tuning, and understanding the van der Waals halides by harnessing their unusual feature of a layered structure, which is promising for future devices based on materials-by-design that are atomically thin.
Mori, Takashi*; Shimada, Takahiro*; Kai, Satoru*; Otani, Akihito*; Yamamoto, Tomohiko; Yan, X.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05
Ueta, Shohei; Imai, Yoshiyuki; Watanabe, Masashi; Segawa, Tomoomi; Yan, X.
International Journal of Applied Ceramic Technology, 20(1), p.261 - 265, 2023/01
Times Cited Count:2 Percentile:25.30(Materials Science, Ceramics)Fukaya, Yuji; Okita, Shoichiro; Sasaki, Koei; Ueta, Shohei; Goto, Minoru; Ohashi, Hirofumi; Yan, X.
Nuclear Engineering and Design, 399, p.112033_1 - 112033_9, 2022/12
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Kernel migration of TRi-structural ISOtropic (TRISO) fuel for High Temperature Gas-cooled Reactor (HTGR) has been analyzed to investigate the potential dominating effects. Kernel migration is a major fuel failure mode and dominant to determine the lifetime of the fuel for High Temperature engineering Test Reactor (HTTR). However, this study shows that the result and reliability depend on the evaluation method. The evaluation method used in this study takes into account of actual distribution of Coated Fuel Particles (CFPs) and the resulting heterogeneous fuel temperature calculation with such distribution. The result shows that the Kernel Migration Rate (KMR) is predicted to be about 10% less compared with the most conservative evaluation.
Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:2 Percentile:47.44(Physics, Nuclear)The low-lying level structure of V and V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for V while the neutron knock-out reaction provided the data for V. Four and five new transitions were determined for V and V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2 and 9/2 levels. The (,) excitation cross sections for V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation, V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:5 Percentile:69.87(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at 230 MeV/nucleon combined with prompt spectroscopy. The momentum distributions corresponding to the removal of and neutrons were measured. The cross sections are consistent with a shell closure at the neutron number , found as strong as at and in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron and orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Sato, Hiroyuki; Yan, X.
Proceedings of 4th International Conference on Generation IV and Small Reactors (G4SR-4), 7 Pages, 2022/10
Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05
Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navrtil, P.*; Ogata, Kazuyuki*; et al.
Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04
Times Cited Count:4 Percentile:71.46(Astronomy & Astrophysics)no abstracts in English
Watanabe, Masashi; Yokoyama, Keisuke; Imai, Yoshiyuki; Ueta, Shohei; Yan, X.
Ceramics International, 48(6), p.8706 - 8708, 2022/03
Times Cited Count:8 Percentile:75.29(Materials Science, Ceramics)Previous studies have used various methods for sintering of SiC, carbon, and SiC/carbon functionally graded materials (FGM). However, no experimental studies on SiC/graphite FGM manufacturing using the spark plasma sintering (SPS) method have been reported. In this study, a SiC/graphite FGM specimen has been fabricated using SPS. The interface between the adjacent layers of the sintered specimen exhibits no apparent defects such as gaps or delaminations. The SiC and graphite phases in the specimen show no substantial change before and after sintering.
Fukaya, Yuji; Ueta, Shohei; Yamamoto, Tomohiko; Chikazawa, Yoshitaka; Yan, X.
Nuclear Technology, 208(2), p.335 - 346, 2022/02
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)When the total volume control on toxicity for nuclear waste management is applied, it becomes a limiting factor for the permittable total operation capacity of nuclear reactors. An alternative conceptual scenario to achieve the control is proposed that aims at toxicity reduction through Partitioning and Transmutation (P&T). Specifically, the electricity generation capacity could be inversely increased up with transmutation of Sr-Cs. Simultaneously, the cooling time before disposal is reduced to 50 years from the 300 years required by the existing scenarios such as (Accelerator Driven System (ADS). Finally, the scenario is also found feasible in terms of energy balance and cost by the neutron source of Li(d,xn) reaction with the deuteron accelerator for transmutation.