Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Oikawa, Kenichi; Sato, Hirotaka*; Watanabe, Kenichi*; Su, Y. H.; Shinohara, Takenao; Kai, Tetsuya; Kiyanagi, Yoshiaki*; Hasemi, Hiroyuki
Journal of Physics; Conference Series, 2605, p.012013_1 - 012013_6, 2023/10
Machida, Masahiko; Yamada, Susumu; Kim, M.; Okumura, Masahiko; Miyamura, Hiroko; Shikaze, Yoshiaki; Sato, Tomoki*; Numata, Yoshiaki*; Tobita, Yasuhiro*; Yamaguchi, Takashi; et al.
RIST News, (69), p.2 - 18, 2023/09
The contamination of radioactive materials leaked from the reactor has resulted in numerous hot spots in the Fukushima Daiichi Nuclear Power Station (1F) building, posing obstacles to its decommissioning. In order to solve this problem, JAEA has conducted research and development of the digital technique for inverse estimation of radiation source distribution and countermeasures against the estimated source in virtual space for two years from 2021 based on the subsidy program "Project of Decommissioning and Contaminated Water Management" performed by the funds from the Ministry of Economy, Trade and Industry. In this article, we introduce the results of the project and the plan of the renewal project started in April 2023. For the former project, we report the derivative method for LASSO method considering the complex structure inside the building and the character of the source and show the result of the inverse estimation using the method in the real reactor building. Moreover, we explain the platform software "3D-ADRES-Indoor" which integrates these achievements. Finally, we introduce the plan of the latter project.
Takagi, Hirotaka*; Takagi, Rina*; Minami, Susumu*; Nomoto, Takuya*; Oishi, Kazuki*; Suzuki, Michito*; Yanagi, Yuki*; Hirayama, Motoaki*; Khanh, N.*; Karube, Kosuke*; et al.
Nature Physics, 19(7), p.961 - 968, 2023/07
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Shobuda, Yoshihiro; Harada, Hiroyuki; Saha, P. K.; Takayanagi, Tomohiro; Tamura, Fumihiko; Togashi, Tomohito; Watanabe, Yasuhiro; Yamamoto, Kazami; Yamamoto, Masanobu
Physical Review Accelerators and Beams (Internet), 26(5), p.053501_1 - 053501_45, 2023/05
Times Cited Count:0 Percentile:0.03(Physics, Nuclear)At the Rapid Cycling Synchrotron (RCS) in Japan Proton Accelerator Research Complex (J-PARC), theoretical predictions have indicated that the kicker-impedance would excite the beam-instability. A 1 MW beam with large emittance can be delivered to the Material and Life Science Experimental Facility (MLF) through suppression of the beam instabilities by choosing the appropriate machine parameters. However, we require other high-intensity and high-quality smaller emittance beams (than the 1 MW beam) for the Main Ring (MR). Hence, we proposed a scheme for suppressing the kicker-impedance by using prototype diodes and resistors, thereby demonstrating the effect on the kicker impedance reduction. However, the J-PARC RCS must be operated with a repetition rate of 25 Hz, which urged us to consider special diodes that are tolerant to heating. After developments, we have demonstrated that the special diodes with resistors can suppress the beam instability by reducing the kicker impedance. Enhanced durability of the prototype diodes and resistors for the 25 Hz operation was also realized. Moreover, the new diodes and the resistors have negligible effect on the extracted beam from the RCS. From a simulation point of view, the scheme can be employed for at least 5 MW beam operation within the stipulated specifications.
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:3 Percentile:85.55(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Katsube, Daiki*; Ono, Shinya*; Takayanagi, Shuhei*; Ojima, Shoki*; Maeda, Motoyasu*; Origuchi, Naoki*; Ogawa, Arata*; Ikeda, Natsuki*; Aoyagi, Yoshihide*; Kabutoya, Yuito*; et al.
Langmuir, 37(42), p.12313 - 12317, 2021/10
Times Cited Count:1 Percentile:8.31(Chemistry, Multidisciplinary)We investigated the oxidation of oxygen vacancies at the surface of anatase TiO(001) using supersonic seeded molecular beam (SSMB) of oxygen. The oxygen vacancies at the top-surface and sub-surface could be eliminated by the supply of oxygen using an SSMB. These results indicate that the interstitial vacancies can be mostly assigned to oxygen vacancies, which can be effectively eliminated by using an oxygen SSMB. Oxygen vacancies are present on the surface of anatase TiO
(001) when it is untreated before transfer to a vacuum chamber. These vacancies, which are stable in the as-grown condition, could also be effectively eliminated using the oxygen SSMB.
Kim, M.; Malins, A.; Machida, Masahiko; Yoshimura, Kazuya; Saito, Kimiaki; Yoshida, Hiroko*; Yanagi, Hideaki*; Yoshida, Toru*; Hasegawa, Yukihiro*
RIST News, (67), p.3 - 15, 2021/09
no abstracts in English
Chen, Y.*; Sato, Masahiro*; Tang, Y.*; Shiomi, Yuki*; Oyanagi, Koichi*; Masuda, Takatsugu*; Nambu, Yusuke*; Fujita, Masaki*; Saito, Eiji
Nature Communications (Internet), 12, p.5199_1 - 5199_7, 2021/08
Times Cited Count:5 Percentile:56.55(Multidisciplinary Sciences)Kikkawa, Takashi*; Reitz, D.*; Ito, Hiroaki*; Makiuchi, Takahiko*; Sugimoto, Takaaki*; Tsunekawa, Kakeru*; Daimon, Shunsuke*; Oyanagi, Koichi*; Ramos, R.*; Takahashi, Saburo*; et al.
Nature Communications (Internet), 12, p.4356_1 - 4356_7, 2021/07
Times Cited Count:16 Percentile:88.05(Multidisciplinary Sciences)Nakazato, Seiya*; Iwasa, Kazuaki*; Hashimoto, Daisuke*; Shiozawa, Mami*; Kuwahara, Keitaro*; Nakao, Hironori*; Sagayama, Hajime*; Ishikado, Motoyuki*; Ohara, Takashi; Nakao, Akiko*; et al.
JPS Conference Proceedings (Internet), 30, p.011128_1 - 011128_6, 2020/03
Sonnenschein, V.*; Tsuji, Yoshiyuki*; Kokuryu, Shoma*; Kubo, Wataru*; Suzuki, So*; Tomita, Hideki*; Kiyanagi, Yoshiaki*; Iguchi, Tetsuo*; Matsushita, Taku*; Wada, Nobuo*; et al.
Review of Scientific Instruments, 91(3), p.033318_1 - 033318_12, 2020/03
Times Cited Count:0 Percentile:0(Instruments & Instrumentation)Ikeda, Shugo*; Kaneko, Koji; Tanaka, Yuki*; Kawasaki, Takuro; Hanashima, Takayasu*; Munakata, Koji*; Nakao, Akiko*; Kiyanagi, Ryoji; Ohara, Takashi; Mochizuki, Kensei*; et al.
Journal of the Physical Society of Japan, 89(1), p.014707_1 - 014707_7, 2020/01
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Koyanagi, Yoshihiko*; Ueta, Shigeki*; Kawasaki, Takuro; Harjo, S.; Cho, K.*; Yasuda, Hiroyuki*
Materials Science & Engineering A, 773, p.138822_1 - 138822_11, 2020/01
Times Cited Count:1 Percentile:6.68(Nanoscience & Nanotechnology)Kim, M.; Malins, A.; Yoshimura, Kazuya; Sakuma, Kazuyuki; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko; Hasegawa, Yukihiro*; Yanagi, Hideaki*
Journal of Environmental Radioactivity, 210, p.105803_1 - 105803_10, 2019/12
Times Cited Count:4 Percentile:18.09(Environmental Sciences)To improve the accuracy of simulations for air dose rates over fallout contaminated areas, the distribution of the radionuclides within the environment should be modelled realistically, e.g. considering differences in radioactivity levels between agricultural land, urban surfaces, and forest compartments. Moreover simulations should model the shielding of rays by buildings, trees and land topography. Here we outline a system for generating three dimensional models of urban and rural areas in Fukushima Prefecture. The
Cs and
Cs radioactivity distribution can be set flexibly across the different components of the model. The models incorporate realistic representations of local buildings, based on nine common Japanese designs, individual conifer and broadleaf trees, and the topography of the land surface. Models are generated from Digital Elevation Model (DEM) and Digital Surface Model (DSM) datasets, and refined by users assisted with ortho-photographs of target sites. Completed models are exported from the system in a format suitable for the Particle and Heavy Ion Transport code System (PHITS) for the calculation of air dose rates and other radiological quantities. The system is demonstrated by modelling a suburban area 4 km from the Fukushima Daiichi Nuclear Power Plant that has yet to be decontaminated. Air dose rates calculated in PHITS were correlated with measurements taken across the site in a car-borne survey.
Hotchi, Hideaki; Harada, Hiroyuki; Takayanagi, Tomohiro
Journal of Physics; Conference Series, 1350, p.012102_1 - 012102_5, 2019/11
Times Cited Count:1 Percentile:54.28Kim, M.; Malins, A.; Sakuma, Kazuyuki; Kitamura, Akihiro; Machida, Masahiko; Hasegawa, Yukihiro*; Yanagi, Hideaki*
Isotope News, (765), p.30 - 33, 2019/10
Here we outline a system for generating three dimensional models of urban and rural areas in Fukushima Prefecture. The Cs and
Cs radioactivity distribution can be set flexibly across the different components of the model. The models incorporate realistic representations of local buildings, individual conifer and broadleaf trees, and the topography of the land surface. The system is demonstrated by modelling a suburban area 4 km from the Fukushima Daiichi Nuclear Power Plant that has yet to be decontaminated. Air dose rates calculated in PHITS were correlated with measurements taken across the site in a car-borne survey.
Harii, Kazuya; Seo, Y.-J.*; Tsutsumi, Yasumasa*; Chudo, Hiroyuki; Oyanagi, Koichi*; Matsuo, Mamoru; Shiomi, Yuki*; Ono, Takahito*; Maekawa, Sadamichi; Saito, Eiji
Nature Communications (Internet), 10, p.2616_1 - 2616_5, 2019/06
Times Cited Count:28 Percentile:83(Multidisciplinary Sciences)Teshigawara, Makoto; Tsuchikawa, Yusuke*; Ichikawa, Go*; Takata, Shinichi; Mishima, Kenji*; Harada, Masahide; Oi, Motoki; Kawamura, Yukihiko*; Kai, Tetsuya; Kawamura, Seiko; et al.
Nuclear Instruments and Methods in Physics Research A, 929, p.113 - 120, 2019/06
Times Cited Count:15 Percentile:87.81(Instruments & Instrumentation)A nano-diamond is an attractive neutron reflection material below cold neutron energy. The total neutron cross section of a nano-diamond was derived from a neutron transmission measurement over the neutron energy range of 0.2 meV to 100 meV because total neutron cross section data were not available. The total cross section of a nano-diamond with particle size of approximately 5 nm increased with a decrease in neutron energy to 0.2 meV. It was approximately two orders of magnitude larger than that of graphite at 0.2 meV. The contribution of inelastic scattering to the total cross section was to be shown negligible small at neutron energies of 1.2, 1.5, 1.9, 2.6, and 5.9 meV in the inelastic neutron scattering measurement. Moreover, small-angle neutron scattering measurements of the nano-diamond showed a large scattering cross section in the forward direction for low neutron energies.
Hotchi, Hideaki; Harada, Hiroyuki; Takayanagi, Tomohiro
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2009 - 2012, 2019/06
Saha, P. K.; Hotchi, Hideaki; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Watanabe, Yasuhiro; Takayanagi, Tomohiro
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.171 - 173, 2019/06