Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yanagisawa, Hiroshi; Umeda, Miki; Motome, Yuiko; Murao, Hiroyuki
JAEA-Technology 2022-030, 80 Pages, 2023/02
Nuclear criticality benchmark analyses were carried out for TRIGA-type reactor systems in which uranium-zirconium hydride fuel rods are loaded by using the continuous-energy Monte Carlo code MVP with the evaluated nuclear data library JENDL-5. The analyses cover two sorts of benchmark data, the IEU-COMP-THERM-003 and IEU-COMP-THERM-013 in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, and effective neutron multiplication factors, reactivity worths for control rods etc. were calculated by JENDL-5 in comparison with those by the previous version of JENDL. As the results, it was confirmed that the effective neutron multiplication factors obtained by JENDL-5 were 0.4 to 0.6% greater than those by JENDL-4.0, and that there were no significant differences in the calculated reactivity worths by between JENDL-5 and JENDL-4.0. Those results are considered to be helpful for the confirmation of calculation accuracy in the analyses on NSRR control rod worths, which are planned in the future.
Yanagisawa, Hiroshi
JAEA-Technology 2021-023, 190 Pages, 2021/11
Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.
Tamai, Hiroshi; Mochiji, Toshiro; Senzaki, Masao*; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.
Dai-41-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2020/11
In light of recent delay of plutonium use in Japan and the increasing criticism of nuclear non-proliferation and nuclear security in the nuclear fuel cycle, the validity of these criticisms will be examined for the sustainable development of the nuclear fuel cycle policy. Issues on the view point of nuclear non-proliferation and nuclear security are examined.
Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.
Enerugi Rebyu, 40(8), p.56 - 57, 2020/07
Strict application of IAEA safeguards and nuclear security should be implemented for Japan's full-scale nuclear fuel cycle. Based on the knowledge and experience of research and development in the nuclear fuel cycle, nuclear material management, the effective and efficient promotion of new technologies should be promoted with scientific and demonstrative measures to strengthen the world's nuclear non-proliferation and nuclear security. Development or sophistication of new technologies, human resource development, and reinforcement of the international framework are future challenge in the international community.
Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.
Enerugi Rebyu, 40(7), p.58 - 59, 2020/06
Japan have promoted the peaceful use of plutonium with the nuclear non-proliferation commitment based on IAEA safeguards agreement and Japan-US nuclear cooperation agreement, as well as ensuring transparency of the policy that Japan has no plutonium without purpose of use. In promoting the nuclear fuel cycle, adherence to those measures and maintaining plutonium utilization by means of plutonium-thermal, and a fast reactor cycle to achieve large-scale and long-term energy supply and environmental improvement, therefore, further research and development is essential.
Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.
Enerugi Rebyu, 40(6), p.58 - 59, 2020/05
In order to promote the peaceful use of nuclear energy, it is important not only to ensure safety but also to ensure nuclear non-proliferation and nuclear security. Japan has contributed to the international community through strengthening nuclear non-proliferation and nuclear security capabilities with technical and human resource development. However, in the wake of the accident at the Fukushima Daiichi Nuclear Power Plant in 2011, Japan's nuclear power plants have not restarted or plutonium use has not progressed smoothly. Concerns have been shown. Towards appropriate steps of Japan's nuclear fuel cycle policy, such concerns are examined and future efforts are summarized.
Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.
Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05
Times Cited Count:10 Percentile:74.3(Physics, Multidisciplinary)The structure of a neutron-rich F nucleus is investigated by a quasifree (
) knockout reaction. The sum of spectroscopic factors of
orbital is found to be 1.0
0.3. The result shows that the
O core of
F nucleus significantly differs from a free
O nucleus, and the core consists of
35%
O
, and
65% excited
O. The result shows that the
O core of
F nucleus significantly differs from a free
O nucleus. The result may infer that the addition of the
proton considerably changes the neutron structure in
F from that in
O, which could be a possible mechanism responsible for the oxygen dripline anomaly.
Shimizu, Yusei*; Haga, Yoshinori; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*
Physical Review B, 93(2), p.024502_1 - 024502_8, 2016/01
Times Cited Count:8 Percentile:40.79(Materials Science, Multidisciplinary)Shimizu, Yusei*; Haga, Yoshinori; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*; Aoki, Dai*; Brison, J.-P.*; Braithwaite, D.*
JPS Conference Proceedings (Internet), 3, p.015009_1 - 015009_6, 2014/06
Tabata, Chihiro*; Inami, Toshiya; Michimura, Shinji*; Yokoyama, Makoto*; Hidaka, Hiroyuki*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*
Philosophical Magazine, 94(32-33), p.3691 - 3701, 2014/00
Times Cited Count:15 Percentile:61.42(Materials Science, Multidisciplinary)Shimizu, Yusei*; Haga, Yoshinori; Ikeda, Yoichi*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*
Physical Review Letters, 109(21), p.217001_1 - 217001_5, 2012/11
Times Cited Count:17 Percentile:68.48(Physics, Multidisciplinary)Izawa, Kazuhiko; Aoyama, Yasuo; Sono, Hiroki; Ogawa, Kazuhiko; Yanagisawa, Hiroshi; Miyoshi, Yoshinori
Proceedings of 9th International Conference on Nuclear Criticality (ICNC 2011) (CD-ROM), 11 Pages, 2012/02
For reactor physics and criticality safety researches, the Static Experiment Critical Facility (STACY) will be modified. In the modification, the present STACY, solution-fuel-type homogeneous cores, will be converted to fuel-pin-type heterogeneous cores moderated by light water. For nuclear safety design of the modified STACY, computational analyses have been carried out by using a Monte Carlo code MVP and a transport code system DANTSYS with cross-section data based on the JENDL-3.3. In the analyses, basic nuclear characteristics have been evaluated, such as criticality, water-level worth and reactor shutdown margin. By the results of these analyses, the feasibility of reactivity control mechanism and the sufficiency of reactor shutdown margin of the modified STACY were confirmed. In addition, temperature and void coefficients of reactivity and kinetic parameters were obtained to comprehend nuclear characteristics of the modified STACY.
Shimizu, Yusei*; Ikeda, Yoichi*; Wakabayashi, Takumi*; Haga, Yoshinori; Tenya, Kenichi*; Hidaka, Hiroyuki*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*
Journal of the Physical Society of Japan, 80(9), p.093701_1 - 093701_4, 2011/09
Times Cited Count:8 Percentile:51.83(Physics, Multidisciplinary)Shimizu, Yusei*; Ikeda, Yoichi*; Wakabayashi, Takumi*; Tenya, Kenichi*; Haga, Yoshinori; Hidaka, Hiroyuki*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*
Journal of the Physical Society of Japan, 80(Suppl.A), p.SA100_1 - SA100_3, 2011/07
Times Cited Count:1 Percentile:11.64(Physics, Multidisciplinary)Yanagisawa, Tatsuya*; Tateiwa, Naoyuki; Mayama, Taichi*; Saito, Hitoshi*; Hidaka, Hiroyuki*; Amitsuka, Hiroshi*; Haga, Yoshinori; Nemoto, Yuichi*; Goto, Terutaka*
Journal of the Physical Society of Japan, 80(Suppl.A), p.SA105_1 - SA105_3, 2011/07
Times Cited Count:3 Percentile:28.35(Physics, Multidisciplinary)Shimizu, Yusei*; Ikeda, Yoichi*; Wakabayashi, Takumi*; Tenya, Kenichi*; Haga, Yoshinori; Hidaka, Hiroyuki*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*
Journal of Physics; Conference Series, 273, p.012084_1 - 012084_4, 2011/02
Times Cited Count:3 Percentile:64.26Izawa, Kazuhiko; Aoyama, Yasuo; Sono, Hiroki; Ogawa, Kazuhiko; Yanagisawa, Hiroshi
JAEA-Technology 2007-001, 40 Pages, 2007/02
A series of critical experiments is conducted in FY 2006 using a heterogeneous core of the Static Experiment Critical Facility (STACY) in the Japan Atomic Energy Agency (JAEA). In the experiment, the core is composed of uranyl nitrate solution (U enrichment 6wt%) containing soluble poison (gadolinium) and 333 pins of uranium dioxide (
U enrichment 5wt%) loaded at a latticepitch of 1.5cm. Prior to the experiment, the following neutronic characteristics were analyzed to assess safety of the core and operation parametor limits: criticality, reactivity and reactor shutdown margins. In the analyses, a Monte Carlo code, MVP, and a neutronics code system, SRAC, were used with an evaluated nuclear data library, JENDL-3.3. From these analyses, it was confirmed that the reactor shutdown margins would comply with the safety criteria under all conditions of the fuel used in the experiments. Simplified formulas for criticality and reactivity were also evaluated based on the analyzed values which are utilized to confirm the operation parameter limits during operations of the core.
Sono, Hiroki; Yanagisawa, Hiroshi*; Ono, Akio*; Kojima, Takuji; Soramasu, Noboru*
Journal of Nuclear Science and Technology, 42(8), p.678 - 687, 2005/08
Times Cited Count:4 Percentile:31.11(Nuclear Science & Technology)Component analysis of -ray doses in criticality accident situations is indispensable for further understanding on emission behavior of
-rays and accurate evaluation of external exposure to human bodies. Such dose components were evaluated, categorizing
-rays into four components: prompt, delayed, pseudo components in the period of criticality, and a residual component in the period after the termination of criticality. This evaluation was performed by the combination of dosimetry experiments at the TRACY facility using a thermoluminescent dosimeter (TLD) made of lithium tetra borate and computational analyses using a Monte Carlo code. The evaluation confirmed that the dose proportions of the above components varied with the distance from the TRACY core tank. This variation was due to the difference in attenuation of the individual components with the distance from the core tank. The evaluated dose proportions quantitatively clarified the contribution of the pseudo and the residual components to be excluded for accurate evaluation of
-ray exposure.
Sono, Hiroki; Yanagisawa, Hiroshi*; Miyoshi, Yoshinori
JAERI-Tech 2003-096, 84 Pages, 2004/01
Prior to the supercritical experiments using a water-reflected core of the TRACY Facility, neutronic characteristics regarding criticality and reactivity of the core system were evaluated. In the analyses, a continuous energy Monte Carlo code, MVP, and a two-dimensional transport code, TWOTRAN, were used together with a nuclear data library, JENDL-3.3. By comparison to the characteristics in the former-used bare core system of TRACY, the water reflector was estimated not to change the kinetic parameter and to reduce the critical solution level by 20 %, the temperature coefficient of reactivity by 6
10 %, and the void coefficient of reactivity by
18 %, respectively. According to the Nordheim-Fuchs model, the first peak power during a power excursion was evaluated to be
15 % smaller than that in the bare system under the same conditions of fuel and reactivity insertion. The influence of the void feedback effect of reactivity, which is left out of consideration in the model, on the power characteristics will be evaluated from the results of the experiments.
Sono, Hiroki; Fukaya, Yuji; Yanagisawa, Hiroshi; Miyoshi, Yoshinori
JAERI-Tech 2003-065, 61 Pages, 2003/07
A series of critical experiments using a heterogeneous core of the Static Experiment Critical Facility (STACY) in the Japan Atomic Energy Research Institute is planned in F.Y. 2003. In the experiment, the core is composed of uranyl nitrate solution (U enrichment 6 wt%) and 333 pins of uranium dioxide (
U enrichment 5 wt%) loaded in lattice-pitch of 1.5 cm. Prior to the experiment, neutronic characteristics are analyzed to evaluate neutronic safety and criticality limitations of the core. The analyzed items are the parameters on criticality, reactivity and reactor shutdown margins. In the analyses, a Monte Carlo code, MVP, and a neutronics code system, SRAC, have been used with an evaluated nuclear data library, JENDL-3.3. By using the calculated characteristics, simplified equations to interpolate these values and criticality limitations of the core are evaluated. It has been also confirmed that the reactor shutdown margins will comply with safety criteria under all fuel conditions in the experiments.