Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 26

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions

Kataoka, Takahiro*; Shuto, Hina*; Naoe, Shota*; Yano, Junki*; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Hanamoto, Katsumi*; Mitsunobu, Fumihiro*; Terato, Hiroaki*; et al.

Journal of Radiation Research (Internet), 62(5), p.861 - 867, 2021/09

 Times Cited Count:5 Percentile:55.27(Biology)

Journal Articles

Evaluation of the redox state in mouse organs following radon inhalation

Kataoka, Takahiro*; Kanzaki, Norie; Sakoda, Akihiro; Shuto, Hina*; Yano, Junki*; Naoe, Shota*; Tanaka, Hiroshi; Hanamoto, Katsumi*; Terato, Hiroaki*; Mitsunobu, Fumihiro*; et al.

Journal of Radiation Research (Internet), 62(2), p.206 - 216, 2021/03

AA2020-0273.pdf:1.2MB

 Times Cited Count:6 Percentile:61.83(Biology)

Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation. Mice inhaled radon at concentrations of 2 or 20 kBq/m$$^{3}$$ for 1, 3, or 10 days. The relationship between antioxidative function and oxidative stress was evaluated by principal component analysis (PCA) and correlation coefficient compared with control mice subjected to sham inhalation. These findings suggested that radon inhalation altered the redox state in organs, but that the characteristics varied depending on the redox state in organs.

Journal Articles

Enhancement of Fe-N-C carbon catalyst activity for the oxygen reduction reaction; Effective increment of active sites by a short and repeated heating process

Yasuda, Satoshi; Uchibori, Yosuke*; Wakeshima, Makoto*; Hinatsu, Yukio*; Ogawa, Hiroaki; Yano, Masahiro; Asaoka, Hidehito

RSC Advances (Internet), 8(66), p.37600 - 37605, 2018/11

 Times Cited Count:12 Percentile:42.69(Chemistry, Multidisciplinary)

We present a quantitative study on the effect of a newly obtained thermal history on the formation of Fe-N-C catalytic sites. A short and repeated heating process is employed as the new thermal history, where short heating (1 min) followed by quenching is applied to a sample with arbitrary repetition. Through electrochemical quantitative analysis, it is found that the new process effectively increases the Fe-N-C mass-based site density (MSD) to almost twice that achieved using a conventional continuous heating process, while the turn-over frequency (TOF) is independent of the process. Elemental analysis shows that the new process effectively suppresses the thermal desorption of Fe and N atoms during the initial formation stage and consequently contributes to an increase in the Fe-N-C site density. The resultant catalytic activity (gravimetric kinetic current density (0.8 V vs. RHE)) is 1.8 times higher than that achieved with the continuous heating process.

JAEA Reports

Horonobe Underground Research Laboratory Project; Synthesis of Phase II (Construction Phase) investigations to a depth of 350m

Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo*; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; et al.

JAEA-Research 2016-025, 313 Pages, 2017/03

JAEA-Research-2016-025.pdf:45.1MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350m. Integration of work from different disciplines into a "geosynthesis" ensures that the Phase II goals have been successfully achieved and identifies key issues that need to made to be addressed in the Phase II investigations Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a "knowledge base" that will reinforce the technical basis for both implementation and the formulation of safety regulations.

Journal Articles

$$^{60}$$Co$$gamma$$-ray irradiation effects on pentacene-based organic thin film transistors

Cai, L.*; Hirao, Toshio; Yano, Hiroaki*; Duan, Z.*; Takayanagi, Yutaro*; Ueki, Hideharu*; Oshima, Takeshi; Nishioka, Yasushiro*

Materials Science Forum, 687, p.576 - 579, 2011/06

 Times Cited Count:3 Percentile:81.92(Engineering, Electrical & Electronic)

no abstracts in English

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

Journal Articles

Electrical characteristics of $$^{60}$$Co $$gamma$$-ray irradiated pentacene-based organic thin film field effect transistors

Cai, L.*; Hirao, Toshio; Yano, Hiroaki*; Duan, Z.*; Takayanagi, Hideharu*; Ueki, Hideharu*; Oshima, Takeshi; Nishioka, Yasushiro*

Proceedings of 9th International Workshop on Radiation Effects on Semiconductor Devices for Space Applications (RASEDA-9), p.176 - 178, 2010/10

no abstracts in English

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2010

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-029, 28 Pages, 2010/08

JAEA-Review-2010-029.pdf:3.43MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based investigation phase (Phase1), Construction phase (Phase2) and Operation phase (Phase3). The project is currently under the construction phase, and the operation phase starts in 2010. This document introduces the research and development activities planned for 2010 fiscal year plan based on the MIU master plan updated in 2010, (1) Investigation plan, (2) Construction plan, (3) Research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2008

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-014, 110 Pages, 2010/07

JAEA-Review-2010-014.pdf:27.34MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

Journal Articles

Recent progress in the energy recovery linac project in Japan

Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05

Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2009

Takeuchi, Shinji; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Amano, Kenji; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2009-017, 29 Pages, 2009/08

JAEA-Review-2009-017.pdf:3.69MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

Journal Articles

Development of digital low level rf system

Michizono, Shinichiro*; Anami, Shozo*; Katagiri, Hiroaki*; Fang, Z.*; Matsumoto, Toshihiro*; Miura, Takako*; Yano, Yoshiharu*; Yamaguchi, Seiya*; Kobayashi, Tetsuya

Kasokuki, 5(2), p.127 - 136, 2008/07

One of the biggest advantages of the digital low level rf (LLRF) system is its flexibility. Owing to the recent rapid progress in digital devices (such as ADCs and DACs) and telecommunication devices (mixers and IQ modulators), digital LLRF system for accelerators becomes popular in these 10 years. The J-PARC linac LLRF system adopted cPCI crates and FPGA based digital feedback system. After the successful operation of J-PARC linac LLRF system, we developed the STF (ILC test facility in KEK) LLRF system. The future R&D projects (ILC and ERL) are also described from the viewpoints of LLRF.

Journal Articles

Superior Charpy impact properties of ODS ferritic steel irradiated in JOYO

Kuwabara, K.*; Kurishita, Hiroaki*; Ukai, Shigeharu; Narui, Makoto*; Mizuta, Shunji; Yamazaki, M.*; Kayano, H.*

Journal of Nuclear Materials, 258-263(Part 2), p.1236 - 1241, 1998/10

 Times Cited Count:29 Percentile:88.57(Materials Science, Multidisciplinary)

None

Oral presentation

Improvement of the wettability of metal oxide surface by radiation induced surface activation, 2

Sayano, Akio*; Kano, Fumihisa*; Saito, Norihisa*; Abe, Hiroaki*; Okamoto, Koji*; Takamasa, Tomoji*; Furuya, Masahiro*; Miyano, Masami*; Yoshikawa, Masahito

no journal, , 

no abstracts in English

Oral presentation

Characteristics of $$gamma$$-ray irradiation pentacene organic thin film field effect transistors

Yano, Hiroaki*; Cai, L.*; Hirao, Toshio; Takayanagi, Yutaro*; Oshima, Takeshi; Nishioka, Yasushiro*

no journal, , 

no abstracts in English

Oral presentation

Influence of oxygen to metal ratio on mechanical properties of uranium and zirconium oxide solid solution

Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Saiki, Yohei*; Kakiuchi, Kazuo*; Kanaoka, Takuya*; Muta, Hiroaki*; Yamanaka, Shinsuke*

no journal, , 

no abstracts in English

Oral presentation

Characterization of fuel debris (27'A), 3; Mechanical properties of (U,Zr)O$$_{2}$$ solid solutions added stabilizing compounds for ZrO$$_{2}$$

Ikeuchi, Hirotomo; Yano, Kimihiko; Ogino, Hideki; Saiki, Yohei*; Honda, Masaki*; Kinoshita, Hideaki*; Muta, Hiroaki*; Yamanaka, Shinsuke*

no journal, , 

In the case of Fukushima Daiichi Nuclear Power Station (1F) Accident, it is estimated that the fuel assemblies were damaged seriously and that fuel deburis deposits in the core or the bottom of vessel. The methodology of defueling such as cutting and core boring is considered referring the case of Three Mile Island Unit 2 (TMI-2) Accident. It is supposed that fuel debris have various characteristics depending on the location. Especially, the information on mechanical properties of fuel debris is important in order to select and develop the defueling technologies. In this work, (U,Zr)O$$_{2}$$ as simulated debris including Y$$_{2}$$O$$_{3}$$, CeO$$_{2}$$, CaO, which exist as a fisson product or a component of concrete and behavior as stabilizer for ZrO$$_{2}$$, was prepared and their mechanical properties were evaluated.

Oral presentation

Well-defined defect formation in monolayer graphene by ion bombardment and proton permeability analysis by electrochemical hydrogen pumping method

Yasuda, Satoshi; Terasawa, Tomoo; Yano, Masahiro; Ogawa, Hiroaki; Kato, Masaru*; Yagi, Ichizo*; Asaoka, Hidehito

no journal, , 

no abstracts in English

Oral presentation

Evaluation of hydrogen peroxide induced oxidative stress by radon inhalation in mouse organs

Kataoka, Takahiro*; Kanzaki, Norie; Sakoda, Akihiro; Ishida, Tsuyoshi; Shuto, Hina*; Yano, Junki*; Tanaka, Hiroshi; Hanamoto, Katsumi*; Terato, Hiroaki*; Mitsunobu, Fumihiro*; et al.

no journal, , 

We have reported that radon inhalation activates antioxidative functions in mouse organs. These activation inhibits reactive oxygen species (ROS) induced oxidative stresses. Activation of antioxidative functions induced by radon inhalation probably due to the production of a small quantity of ROS. However, there were no reports on this mechanism. In this study, we evaluated hydrogen peroxide induced oxidative stress by radon inhalation in mouse organs. That is, mice inhaled radon at a concentration of 1 kBq/m$$^{3}$$ or 10 kBq/m$$^{3}$$ for 24 hours. Results showed that radon inhalation increased hydrogen peroxide in liver and lung by 20%. On the other hand, hydrogen peroxide in heart decreased by 20%. This is probably due to total glutathione reacts with hydrogen peroxide. These findings suggest that radon inhalation produces a small quantity of hydrogen peroxide, which is ROS, in mouse organs. However, antioxidative related substances, which are catalase and total glutathione, play an important role to reduce oxidative stress.

Oral presentation

A Basic study on the production of hydrogen peroxide by radon inhalation in mouse organs

Kataoka, Takahiro*; Kanzaki, Norie; Sakoda, Akihiro; Ishida, Tsuyoshi; Shuto, Hina*; Yano, Junki*; Tanaka, Hiroshi; Hanamoto, Katsumi*; Terato, Hiroaki*; Mitsunobu, Fumihiro*; et al.

no journal, , 

no abstracts in English

26 (Records 1-20 displayed on this page)