Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of the American Society for Mass Spectrometry, 35(6), p.1178 - 1183, 2024/05
Times Cited Count:0 Percentile:0.00(Biochemical Research Methods)A sensitive analytical technique was investigated in order to determine 10 order of
U/
U ratio in the sub-ng of uranium using a multi-collector ICP-MS. First, the solution volume was concentrated to one tenth to obtain higher intensities. Next, data acquisition was started from the beginning of the solution uptake and continued until all solution was exhausted. Taking advantage of multi-collector measurement, all data were used with excepting the portion affected by air mixing at the beginning and end of sample introduction. The isotope ratios were calculated from the total counts of each isotope. This technique was applied to U isotope standard (IRMM-184) to measure the 10
order of
U/
U ratio in the sub-ng of uranium. Measured values were in good agreement with the certified value within the uncertainity (
=2). The uncertainties obtained with this new technique (32% on average) were revised to be 10 times smaller than those obtained with the conventionalmethod.
Hirano, Tatsumi*; Maeda, Takehiro*; Murata, Tetsuyuki*; Yamamoto, Takahiro*; Matsubara, Eiichiro*; Shobu, Takahisa; Shiro, Ayumi*; Yasuda, Ryo*; Takamatsu, Daiko*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(5), p.345 - 353, 2023/10
no abstracts in English
Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Hosha Kagaku, (48), p.1 - 15, 2023/09
Secondary Ion Mass Spectrometry (SIMS) is the method to detect secondary ions produced by the sputtering of primary ions. SIMS is one of effective method to measure isotopic composition of particles containing nuclear material in environmental sample for safeguards. We are a group member of the International Atomic Energy Agency (IAEA)'s network of analytical laboratories and have developed analytical techniques using SIMS and other mass spectrometers for nuclear safeguards. We will introduce the principle of SIMS and analytical techniques developed by our group to measure isotopic composition of uranium particles which having a particle diameter of micron order in environmental sample for safeguards.
Miyamoto, Yutaka; Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Yasuda, Kenichiro
Isotope News, (786), p.22 - 25, 2023/04
no abstracts in English
Hirano, Tatsumi*; Maeda, Takehiro*; Murata, Tetsuyuki*; Yamaki, Takahiro*; Matsubara, Eiichiro*; Shobu, Takahisa; Shiro, Ayumi*; Yasuda, Ryo*; Takamatsu, Daiko*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(1), p.49 - 57, 2023/02
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.108 - 113, 2022/11
Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800C reduced uranium secondary ion quantity to 33% compared with baking at 350
C. Uranium hydride generation ratio of the sample baked at 850
C was also 4 times higher than the sample baked at 350
C. Baking at 850
C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350
C is suitable for uranium particles in the safeguards sample.
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.154 - 158, 2022/11
Precise determination of minor U isotopes (U and
U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.
Takeuchi, Yusuke*; Tojo, Junji*; Nakazawa, Yuga*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; et al.
Proceedings of 13th International Particle Accelerator Conference (IPAC 22) (Internet), p.1534 - 1537, 2022/06
The muon g-2/EDM experiment is under preparation at Japan Proton Accelerator Research Complex (J-PARC), and the muon linear accelerator for the experiment is being developed. A Disk-and-Washer (DAW) cavity will be used for the medium-velocity part of the accelerator, and muons will be accelerated from =
= 0.3 to 0.7 with the operating frequency of 1.296 GHz. Machining, brazing, and low-power measurements of a prototype cell reflecting the design of the first tank of DAW were performed to identify fabrication problems. Several problems were identified, such as misalignment of washers during brazing, and some measures will be taken in the actual tank fabrication. In this paper, the results of the prototype cell fabrication will be reported.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.146 - 150, 2021/12
no abstracts in English
Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09
Times Cited Count:3 Percentile:34.89(Nuclear Science & Technology)A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion (
CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after
CF reaction.
Nishimura, Hayato*; Hojo, Tomohiko*; Ajita, Saya*; Shibayama, Yuki*; Koyama, Motomichi*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Akiyama, Eiji*
Tetsu To Hagane, 107(9), p.760 - 768, 2021/09
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)no abstracts in English
Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08
Times Cited Count:3 Percentile:34.89(Nuclear Science & Technology)A muon () having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by
and form a muonic hydrogen molecular ion, dt
. Due to the short inter-nuclear distance of dt
, the nuclear fusion, d +t
+ n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion (
CF). Recently, the interest on
CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of
CF in a two-layered hydrogen isotope target.
Shibayama, Yuki; Hojo, Tomohiko*; Koyama, Motomichi*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Matsuno, Takashi*; Akiyama, Eiji*
ISIJ International, 61(4), p.1322 - 1329, 2021/04
Times Cited Count:7 Percentile:41.53(Metallurgy & Metallurgical Engineering)Nishimura, Hayato*; Hojo, Tomohiko*; Ajita, Saya*; Shibayama, Yuki*; Koyama, Motomichi*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Akiyama, Eiji*
ISIJ International, 61(4), p.1170 - 1178, 2021/04
Times Cited Count:7 Percentile:41.53(Metallurgy & Metallurgical Engineering)Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Esaka, Fumitaka; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of Radioanalytical and Nuclear Chemistry, 328(1), p.103 - 111, 2021/04
Times Cited Count:4 Percentile:44.71(Chemistry, Analytical)An analytical technique was developed to determine the age of uranium particles for safeguards. After the chemical separation of uranium and thorium, the Th/
U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a
U-based reference material comprising a certain amount of
Th as a progeny nuclide of
U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of -28 to 2 years from the reference date.
Hojo, Tomohiko*; Akiyama, Eiji*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Kinugasa, Junichiro*; Yuse, Fumio*
Corrosion Science, 177, p.108957_1 - 108957_9, 2020/12
Times Cited Count:27 Percentile:81.75(Materials Science, Multidisciplinary)Hydrogen assisted cracking on hemispherically-stretch-formed specimens of transformation induced plasticity-aided martensitic steel was investigated. Hydrogen charging induced cracking around the foot of the impression formed on the steel sheet, and the cracks propagated along the radial direction toward the hillside and the plains. Distributions of stress, plastic strain and volume fraction of retained austenite were analyzed employing the energy-dispersive X-ray diffraction method utilizing the synchrotron X-ray radiation at SPring-8. It was notable that the crack initiation took place in the region where the measured tensile stress was the highest. Influences of plastic strain and resulted martensitic transformation were also suggested.
Hojo, Tomohiko*; Kumai, B.*; Koyama, Motomichi*; Akiyama, Eiji*; Waki, Hiroyuki*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Nagasawa, Akihiko*
International Journal of Fracture, 224(2), p.253 - 260, 2020/08
Times Cited Count:17 Percentile:63.67(Materials Science, Multidisciplinary)In the study, the pre-strain effect on hydrogen embrittlement property of the ultra-high-strength transformation-induced plasticity -aided bainitic ferrite steel was investigated towards application for automobile frame parts. 3-10% tensile pre-strain suppressed hydrogen-induced mechanical degradation relative to total elongation while 12-15% pre-strained specimen did not exhibit elongation after hydrogen charging. The advantageous effect of the 3-10% pre-strain was attributed to the suppression of crack initiation related to retained austenite. The TRIP by pre-straining decreased the volume fraction of retained austenite before hydrogen charging, thereby reducing existing probabilities of preferential crack initiation sites and propagation paths. Conversely, high pre-strain such as 12-15% does not effectively work due to work hardening resulting in increases in hydrogen embrittlement susceptibility and a significant increase in hydrogen content due to the multiplication of dislocations.
Kato, Masaru*; Nakahoshiba, Ryota*; Ogura, Kazuya*; Tokuda, Shoichi*; Yasuda, Satoshi; Higashi, Kotaro*; Uruga, Tomoya*; Uemura, Yohei*; Yagi, Ichizo*
ACS Applied Energy Materials (Internet), 3(7), p.6768 - 6774, 2020/07
Times Cited Count:17 Percentile:59.32(Chemistry, Physical)To understand electronic effects of nitrogen-doped and polymer-coated carbon supports on the catalytic activity of Pt-based nanostructured catalysts, we prepared PtNi nanoframes (NFs) supported on polybenzimidazole (PBI)-coated and uncoated carbon nanotubes for the oxygen reduction reaction (ORR), and then compared their catalytic activities and electronic properties with those of NFs immobilized on nitrogen-doped and undoped carbon supports. Although both PBI-coating and nitrogen-doping approaches improved the catalytic activity of NFs,
X-ray photoelectron spectroscopy and
X-ray absorption spectroscopy revealed that nitrogen doping showed electronic effects on NFs, whereas PBI-coating showed almost no impact on the electronic state of NFs but stabilized Pt(OH)
species under electrochemical conditions. Our studies demonstrate that difference in microscopic environments of nitrogen atoms at the catalyst/support interface is highly sensitive to the electronic effects of supports on Pt-based electrocatalysts.
Cho, K.*; Morioka, Ryota*; Harjo, S.; Kawasaki, Takuro; Yasuda, Hiroyuki*
Scripta Materialia, 177, p.106 - 111, 2020/03
Times Cited Count:53 Percentile:94.33(Nanoscience & Nanotechnology)Sue, Yuki*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Inami, Kenji*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kitamura, Ryo; et al.
Physical Review Accelerators and Beams (Internet), 23(2), p.022804_1 - 022804_7, 2020/02
Times Cited Count:2 Percentile:21.81(Physics, Nuclear)A destructive monitor to measure the longitudinal bunch width of a low-energy and low-intensity muon beam was developed. This bunch-width monitor (BWM) employed microchannel plates to detect a single muon with high time resolution. In addition, constant-fraction discriminators were adopted to suppress the time-walk effect. The time resolution was measured to be 65 ps in rms using a picosecond-pulsed laser. This resolution satisfied the requirements of the muon linac of the J-PARC E34 experiment. We measured the bunch width of negative-muonium ions accelerated with a radio-frequency quadrupole using the BWM. The bunch width was successfully measured to be 54
11 ns, which is consistent with the simulation.