Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of Nuclear Science and Technology, 12 Pages, 2025/09
Times Cited Count:0 Percentile:0.00Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Miyamoto, Yutaka; Yasuda, Kenichiro
Journal of Nuclear Science and Technology, 10 Pages, 2025/05
A new automated particle measurement (APM) combined with micromanipulation using large geometry secondary ion mass spectrometry instrument was proposed and demonstrated to remove the particle mixing effect, which indicated that the aggregation of uranium particles was detected as a single uranium particle, from APM results. The results showed that the new APM method was more effective than the traditional APM method in removing the particle mixing effect from the APM results and determining the existence of minor uranium isotopes in the samples.
U/
U isotopic analysis of trace uranium in safeguards environmental samples using multicollector inductively coupled plasma mass spectrometryTomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of the American Society for Mass Spectrometry, 35(6), p.1178 - 1183, 2024/05
Times Cited Count:0 Percentile:0.00(Biochemical Research Methods)A sensitive analytical technique was investigated in order to determine 10
order of
U/
U ratio in the sub-ng of uranium using a multi-collector ICP-MS. First, the solution volume was concentrated to one tenth to obtain higher intensities. Next, data acquisition was started from the beginning of the solution uptake and continued until all solution was exhausted. Taking advantage of multi-collector measurement, all data were used with excepting the portion affected by air mixing at the beginning and end of sample introduction. The isotope ratios were calculated from the total counts of each isotope. This technique was applied to U isotope standard (IRMM-184) to measure the 10
order of
U/
U ratio in the sub-ng of uranium. Measured values were in good agreement with the certified value within the uncertainity (
=2). The uncertainties obtained with this new technique (32% on average) were revised to be 10 times smaller than those obtained with the conventionalmethod.
Hirano, Tatsumi*; Maeda, Takehiro*; Murata, Tetsuyuki*; Yamamoto, Takahiro*; Matsubara, Eiichiro*; Shobu, Takahisa; Shiro, Ayumi*; Yasuda, Ryo*; Takamatsu, Daiko*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(5), p.345 - 353, 2023/10
no abstracts in English
Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Hosha Kagaku, (48), p.1 - 15, 2023/09
Secondary Ion Mass Spectrometry (SIMS) is the method to detect secondary ions produced by the sputtering of primary ions. SIMS is one of effective method to measure isotopic composition of particles containing nuclear material in environmental sample for safeguards. We are a group member of the International Atomic Energy Agency (IAEA)'s network of analytical laboratories and have developed analytical techniques using SIMS and other mass spectrometers for nuclear safeguards. We will introduce the principle of SIMS and analytical techniques developed by our group to measure isotopic composition of uranium particles which having a particle diameter of micron order in environmental sample for safeguards.
Miyamoto, Yutaka; Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Yasuda, Kenichiro
Isotope News, (786), p.22 - 25, 2023/04
no abstracts in English
Hirano, Tatsumi*; Maeda, Takehiro*; Murata, Tetsuyuki*; Yamaki, Takahiro*; Matsubara, Eiichiro*; Shobu, Takahisa; Shiro, Ayumi*; Yasuda, Ryo*; Takamatsu, Daiko*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(1), p.49 - 57, 2023/02
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.154 - 158, 2022/11
Precise determination of minor U isotopes (
U and
U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.108 - 113, 2022/11
Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800
C reduced uranium secondary ion quantity to 33% compared with baking at 350
C. Uranium hydride generation ratio of the sample baked at 850
C was also 4 times higher than the sample baked at 350
C. Baking at 850
C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350
C is suitable for uranium particles in the safeguards sample.
Takeuchi, Yusuke*; Tojo, Junji*; Yamanaka, T.*; Nakazawa, Yuga*; Iinuma, Hiromi*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.562 - 564, 2022/10
A muon linac is under development for future muon g-2/EDM experiments at J-PARC. The linac provides a 212 MeV muon beam to an MRI-type compact storage ring. After the initial acceleration using the electrostatic field created by mesh and cylindrical electrodes, the muons are accelerated using four types of radio-frequency accelerators. To validate the linac design as a whole, end-to-end simulations were performed using General Particle Tracer. In addition, error studies were performed to investigate the effects on beam and spin dynamics of various errors in the accelerator components and input beam distribution. This paper describes the results of the end-to-end simulations and error studies.
Kondo, Yasuhiro; Kitamura, Ryo; Fuwa, Yasuhiro; Morishita, Takatoshi; Moriya, Katsuhiro; Takayanagi, Tomohiro; Otani, Masashi*; Cicek, E.*; Ego, Hiroyasu*; Fukao, Yoshinori*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.636 - 641, 2022/09
The muon linac project for the precise measurement of the muon anomalous magnetic and electric dipole moments, which is currently one of the hottest issues of the elementary particle physics, is in progress at J-PARC. The muons from the J-PARC muon facility are once cooled to room temperature, then accelerated up to 212 MeV with a normalized emittance of 1.5
mm mrad and a momentum spread of 0.1%. Four types of accelerating structures are adopted to obtain the efficient acceleration with a wide beta range from 0.01 to 0.94. The project is moving into the construction phase. We already demonstrated the re-acceleration scheme of the decelerated muons using a 324-MHz RFQ in 2017. The high-power test of the 324-MHz Interdigital H-mode (IH) DTL using a prototype cavity was performed in 2021. The fabrication of the first module of 14 modules of the 1296-MHz Disk and Washer (DAW) CCL will be done to confirm the production process. Moreover, the final design of the travelling wave accelerating structure for the high beta region is also proceeding. In this paper, the recent progress toward the realization of the world first muon linac will be presented.
Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Mizobata, Satoshi*; Otani, Masashi*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.275 - 278, 2022/09
We conducted a high-power test of a prototype cavity of a 324-MHz inter-digital H-mode drift tube linac (IH-DTL) for the muon g-2/EDM experiment at J-PARC. This prototype cavity (short-IH) was developed to verify the fabrication methodology for the full-length IH cavity with a monolithic DT structure. After 40 h of conditioning, the short-IH has been stably operated with an RF power of 88 kW, which corresponds to 10% higher accelerating field than the design field (E0) of 3.0 MV/m. In addition, the thermal characteristics and frequency response were measured, verifying that the experimental data was consistent with the three-dimensional model. In this paper, the high-power tests of this IH-DTL for muon acceleration are described.
Takeuchi, Yusuke*; Tojo, Junji*; Nakazawa, Yuga*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; et al.
Proceedings of 13th International Particle Accelerator Conference (IPAC 22) (Internet), p.1534 - 1537, 2022/06
The muon g-2/EDM experiment is under preparation at Japan Proton Accelerator Research Complex (J-PARC), and the muon linear accelerator for the experiment is being developed. A Disk-and-Washer (DAW) cavity will be used for the medium-velocity part of the accelerator, and muons will be accelerated from
=
= 0.3 to 0.7 with the operating frequency of 1.296 GHz. Machining, brazing, and low-power measurements of a prototype cell reflecting the design of the first tank of DAW were performed to identify fabrication problems. Several problems were identified, such as misalignment of washers during brazing, and some measures will be taken in the actual tank fabrication. In this paper, the results of the prototype cell fabrication will be reported.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.146 - 150, 2021/12
no abstracts in English
Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09
Times Cited Count:3 Percentile:28.57(Nuclear Science & Technology)A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2
s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion (
CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after
CF reaction.
Nishimura, Hayato*; Hojo, Tomohiko*; Ajita, Saya*; Shibayama, Yuki*; Koyama, Motomichi*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Akiyama, Eiji*
Tetsu To Hagane, 107(9), p.760 - 768, 2021/09
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)no abstracts in English
Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08
Times Cited Count:3 Percentile:28.57(Nuclear Science & Technology)A muon (
) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by
and form a muonic hydrogen molecular ion, dt
. Due to the short inter-nuclear distance of dt
, the nuclear fusion, d +t
+ n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion (
CF). Recently, the interest on
CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of
CF in a two-layered hydrogen isotope target.
Shibayama, Yuki; Hojo, Tomohiko*; Koyama, Motomichi*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Matsuno, Takashi*; Akiyama, Eiji*
ISIJ International, 61(4), p.1322 - 1329, 2021/04
Times Cited Count:8 Percentile:38.82(Metallurgy & Metallurgical Engineering)Nishimura, Hayato*; Hojo, Tomohiko*; Ajita, Saya*; Shibayama, Yuki*; Koyama, Motomichi*; Saito, Hiroyuki*; Shiro, Ayumi*; Yasuda, Ryo*; Shobu, Takahisa; Akiyama, Eiji*
ISIJ International, 61(4), p.1170 - 1178, 2021/04
Times Cited Count:8 Percentile:38.82(Metallurgy & Metallurgical Engineering)Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Esaka, Fumitaka; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of Radioanalytical and Nuclear Chemistry, 328(1), p.103 - 111, 2021/04
Times Cited Count:6 Percentile:52.28(Chemistry, Analytical)An analytical technique was developed to determine the age of uranium particles for safeguards. After the chemical separation of uranium and thorium, the
Th/
U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a
U-based reference material comprising a certain amount of
Th as a progeny nuclide of
U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of -28 to 2 years from the reference date.