Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of bond repair effect for ultra-high-strength concrete specimens by neutron diffraction method

Yasue, Ayumu*; Kobayashi, Kensuke*; Yoshioka, Masahiro*; Noma, Takashi*; Okuno, Koichi*; Tanaka, Seiichiro*; Hirata, Yoshikazu*; Ooka, Tokunao*; Kimura, Yoshiharu*; Nagai, Tomoya*; et al.

Journal of Advanced Concrete Technology, 21(5), p.337 - 350, 2023/05

 Times Cited Count:0 Percentile:0.00(Construction & Building Technology)

The purpose of this study was to evaluate the use of resin injection to repair cracks in ultra-high-strength concrete (UHSC) members. As a preliminary step, the applicability of the neutron diffraction method (NDM) to investigate the effect of repairs in UHSC specimens was examined. The experimental results showed that the NDM can measure stresses in rebars in UHSC and normal concrete specimens. Therefore, in this experiment, the NDM was used to measure the bond performance of repairs with epoxy resin around the slit in normal concrete and UHSC specimens and examine the effect of repair on the UHSC specimens. Displacement around the slit was measured using a PI-shape displacement transducer. The evaluation confirmed that the bond performance of the repaired area was recovered by resin injection regardless of the concrete strength. In addition, the displacement around the slit was smaller for the injected specimens than the noninjected specimens. These experimental results clarified that by injecting resin, the same bond repair effect could be obtained in UHSC and normal concrete specimens.

Journal Articles

Accuracy of measuring rebar strain in concrete using a diffractometer for residual stress analysis

Yasue, Ayumu*; Kawakami, Mayu*; Kobayashi, Kensuke*; Kim, J.*; Miyazu, Yuji*; Nishio, Yuhei*; Mukai, Tomohisa*; Morooka, Satoshi; Kanematsu, Manabu*

Quantum Beam Science (Internet), 7(2), p.15_1 - 15_14, 2023/05

Journal Articles

Effect of dry-wet cycles on the relative moisture content in concrete specimen

Hosokawa, Takayuki*; Yasue, Ayumu*; Kim, J.*; Kurita, Keisuke; Kanematsu, Manabu*

Konkurito Kozobutsu No Hoshu, Hokyo, Appuguredo Rombun Hokokushu (CD-ROM), 22, p.113 - 118, 2022/10

no abstracts in English

Journal Articles

Influence of shape of deformed rebar on bond performance of reinforced concrete

Kobayashi, Kensuke*; Yasue, Ayumu*; Morooka, Satoshi; Kanematsu, Manabu*

Konkurito Kogaku Nenji Rombunshu (DVD-ROM), 44(1), p.208 - 213, 2022/07

no abstracts in English

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2014)

Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Kokubu, Yoko; Kobori, Kazuo; Makuuchi, Ayumu; Matsubara, Akihiro; Shibata, Kenji; Tamura, Hajimu; Tanabe, Hiroaki; et al.

JAEA-Review 2014-033, 43 Pages, 2014/09

JAEA-Review-2014-033.pdf:16.91MB

The concept of geological disposal of HLW in Japan is based on a multi-barrier system which combines a stable geological environment with a robust barrier system. Potential geological host formations and their surroundings are chosen, in particular, for their long-term stability, taking into account the fact that Japan is located in a tectonically active zone. This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of HLW in JAEA, in fiscal year 2014. The objectives and contents in fiscal year 2014 are described in detail based on the outline of 5 years plan (fiscal years 2010-2014). In addition, the planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal years 2012

Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Hanamuro, Takahiro; Kokubu, Yoko; Sueoka, Shigeru; Makuuchi, Ayumu; Ikuta, Masafumi; Matsubara, Akihiro; Tamura, Hajimu; et al.

JAEA-Research 2013-047, 109 Pages, 2014/03

JAEA-Research-2013-047.pdf:6.81MB

This annual report documents the progress of R&D in the 3rd fiscal year during the JAEA 2nd Midterm Plan (FY 2010 - 2014) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) development and systematization of investigation techniques for selecting suitable sites in geosphere stability, (2) development, application and verification of prediction models for evaluating the changes of geological environment in thermal, hydraulic, mechanical and geochemical conditions for a long period of time, and (3) development of new dating techniques for providing information about geologic history and the timing of geologic events. In this paper, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific programme for fiscal year 2013)

Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Hanamuro, Takahiro; Kokubu, Yoko; Makuuchi, Ayumu; Ikuta, Masafumi; Matsubara, Akihiro; Ishimaru, Tsuneari; Umeda, Koji

JAEA-Review 2013-023, 42 Pages, 2013/10

JAEA-Review-2013-023.pdf:2.82MB

The concept of geological disposal of HLW in Japan is based on a multi-barrier system which combines a stable geological environment with a robust barrier system. Potential geological host formations and their surroundings are chosen, in particular, for their long-term stability, taking into account the fact that Japan is located in a tectonically active zone. This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of HLW in JAEA, in fiscal year 2013. The objectives and contents in fiscal year 2013 are described in detail based on the outline of 5 years plan (fiscal years 2010-2014). In addition, the planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

7 (Records 1-7 displayed on this page)
  • 1