Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantum critical behavior of the hyperkagome magnet Mn$$_3$$CoSi

Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.

Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

Low energy vibrational excitations characteristic of superionic glass

Nakamura, Mitsutaka; Iwase, Hiroki; Arai, Masatoshi; Kartini, E.*; Russina, M.*; Yokoo, Tetsuya*; Taylor, J. W.*

Physica B; Condensed Matter, 385-386(1), p.552 - 554, 2006/11

 Times Cited Count:3 Percentile:17.99(Physics, Condensed Matter)

The mechanism of high ionic conductivity in superionic glass constitute an unsolved problem in the field of science.Here we performed inelastic neutron scattering measurements of superionic glass system (AgI)$$_{x}$$(Ag$$_{2}$$S)$$_{x}$$(AgPO$$_{3}$$)$$_{1-2x}$$ by using MARI spectrometer at ISIS, and found that the $$Q$$-dependence of inelastic intensity in the energy region from 1 to 3 meV of superionic phase glass shows an excess intensity above $$Q$$=1.8$AA$^{-1}$$ compared with insulator phase one. Similar phenomena were also observed in another superionic glass (AgI)$$_{0.5}$$(AgPO$$_{3}$$)$$_{0.5}$$ by using NEAT spectrometer at HMI with high resolution measurement. These results clearly suggest peculiar low energy vibrational excitations should be universal features of superionic glass.

Journal Articles

Conceptual design on an integrated metal fuel recycle system

Sato, Koji; Fujioka, Tsunaaki; Nakabayashi, Hiroki; Kitajima, Shoichi; Yokoo, Takeshi*; Inoue, Tadashi*

Global 2003; International Conference on Atoms for Prosperity: Upda, 0 Pages, 2003/00

We have been performing the feasibility study on conceptual design for an integrated metallic fuel recycle plant of 38 tHM/y throughput. As a result of this study, the process concept was constructed, and the main equipment and devices were designed considering rationalixation,operationability, reduction of environmental impact and safety for the future commercialization. Furthermore, the image of the whole building included in cells was examined. In particular, the electrorefiner was enlarged from its current size and the cathode processor was improved from the current batch type to the continuation type to increase throughput. The plant was evaluated comprehensively. We confirmed that the major specifications for plant design would be satisfied. The economical cometitiveness of the plant has been evaluated.

Oral presentation

Remediation mechanisms of uranium mill-tailing site at Ningyo-toge, Japan, under the circumneutral condition

Kawamoto, Keisuke*; Ochiai, Asumi*; Takeda, Ayaka*; Nakano, Yuriko*; Yokoo, Hiroki*; Onuki, Toshihiko*; Ohara, Yoshiyuki; Fukuyama, Kenjin; Utsunomiya, Satoshi*

no journal, , 

no abstracts in English

Oral presentation

Elucidation of the formation mechanism of manganese oxide by manganese oxidizing fungi at Ningyo-toge Mine

Takeda, Ayaka*; Nakano, Yuriko*; Ochiai, Asumi*; Yokoo, Hiroki*; Ohara, Yoshiyuki; Fukuyama, Kenjin; Nagayasu, Takaaki; Onuki, Toshihiko*; Utsunomiya, Satoshi*

no journal, , 

no abstracts in English

Oral presentation

Remediation mechanisms of uranium mill-tailing site at Ningyo-toge, Japan, under the circumneutral condition

Kawamoto, Keisuke*; Ochiai, Asumi*; Takeda, Ayaka*; Nakano, Yuriko*; Yokoo, Hiroki*; Oki, Takumi*; Onuki, Toshihiko*; Ohara, Yoshiyuki; Fukuyama, Kenjin; Utsunomiya, Satoshi*

no journal, , 

In the Ningyo-toge uranium mine, Okayama, Japan, various toxic elements such as U, As, and Ra are present in the mine wastewaters, of which the concentration except for Ra in the wastewater decrease below the regulatory limit by transport to the slag dumping pond. The mechanisms of decreasing their concentrations in the wastewaters are not fully understood. In order to understand the fundamental processes of natural attenuation at this site, we have investigated the wastewaters and solids from upstream to the pond at the downstream. Wastewater was contacted with oxygenated water and the amount of dissolved oxygen increased. Simultaneously dissolved ferrous iron was oxidized to form ferrihydrite nanoparticles, which are associated with silica colloids, As and U. The ferrihydrite nanoparticles as suspended colloids were transported to the pond in downstream, where the waste stream is completely oxidized. In the slag dumping pond, Mn dioxide, birnessite, dominantly occurs forming a mixture with ferrihydrite + silica colloid, which has a potential to adsorb Ra$$^{2+}$$. Consequently, Fe hydroxides nanoparticles and Mn dioxides in Ningyo-toge play a key role on removing U, As and Ra from the wastewater.

Oral presentation

Elucidation of natural purification mechanism of mine water at Ningyo-toge uranium mine

Yokoo, Hiroki*; Kawamoto, Keisuke*; Oki, Takumi*; Uehara, Motoki*; Onuki, Toshihiko*; Ohara, Yoshiyuki; Fukuyama, Kenjin; Hochella, M. F. Jr.*

no journal, , 

no abstracts in English

8 (Records 1-8 displayed on this page)
  • 1