Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 91

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Nanoscale heterogeneity induced by nonmagnetic Zn dopants in the quantum critical metal CeCoIn$$_5$$; $$^{115}$$In NQR/NMR and $$^{59}$$Co NMR study

Sakai, Hironori; Tokunaga, Yo; Kambe, Shinsaku; Zhu, J.-X.*; Ronning, F.*; Thompson, J. D.*; Ramakrishna, S. K.*; Reyes, A. P.*; Suzuki, Kohei*; Oshima, Yoshiki*; et al.

Physical Review B, 104(8), p.085106_1 - 085106_12, 2021/08

Antiferromagnetism in a prototypical quantum critical metal CeCoIn$$_5$$ is known to be induced by slight substitutions of non-magnetic Zn atoms for In. In nominally 7% Zn substituted CeCoIn$$_5$$, an antiferromagnetic (AFM) state coexists with heavy fermion superconductivity. Heterogeneity of the electronic states is investigated in Zn doped CeCoIn$$_5$$ by means of nuclear quadrupole and magnetic resonances (NQR and NMR). Site-dependent NQR relaxation rates $$1/T_1$$ indicate that the AFM state is locally nucleated around Zn substituents in the matrix of a heavy fermion state, and percolates through the bulk at the AFM transition temperature $$T_{rm N}$$. At lower temperatures, an anisotropic superconducting (SC) gap below the SC transition temperature $$T_{rm c}$$, and the SC state permeates through the AFM regions via a SC proximity effect. Applying an external magnetic field induces a spin-flop transition near 5 T, reducing the volume of the AFM regions. Consequently, a short ranged inhomogeneous AFM state survives and coexists with a paramagnetic Fermi liquid state at high fields.

Journal Articles

Great achievements of M. Salvatores for nuclear data adjustment study with use of integral experiments

Yokoyama, Kenji; Ishikawa, Makoto*

Annals of Nuclear Energy, 154, p.108100_1 - 108100_11, 2021/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the design of innovative nuclear reactors such as fast reactors, the improvement of the prediction accuracies for neutronics properties is an important task. The nuclear data adjustment is a promising methodology for this issue. The idea of the nuclear data adjustment was first proposed in 1964. Toward its practical application, however, a great deal of study has been conducted over a long time. While it took about 10 years to establish the theoretical formulation, the research and development for its practical application has been conducted for more than half a century. Researches in this field are still active, and the fact suggests that the improvement of the prediction accuracies is indispensable for the development of new types of nuclear reactors. Massimo Salvatores, who passed away in March 2020, was one of the first proposers to develop the nuclear data adjustment technique, as well as one of the great contributors to its practical application. Reviewing his long-time works in this area is almost the same as reviewing the history of the nuclear data adjustment methodology. The authors intend that this review would suggest what should be done in the future toward the next development in this area. The present review consists of two parts: a) the establishment of the nuclear data adjustment methodology and b) the achievements related to practical applications. Furthermore, the former is divided into two aspects: the study on the nuclear data adjustment theory and the numerical solution for sensitivity coefficient that is requisite for the nuclear data adjustment. The latter is separated to three categories: the use of integral experimental data, the uncertainty quantification and design target accuracy evaluation, and the promotion of nuclear data covariance development.

JAEA Reports

Development of the Unified Cross-section Set ADJ2017

Yokoyama, Kenji; Sugino, Kazuteru; Ishikawa, Makoto; Maruyama, Shuhei; Nagaya, Yasunobu; Numata, Kazuyuki*; Jin, Tomoyuki*

JAEA-Research 2018-011, 556 Pages, 2019/03


We have developed a new unified cross-section set ADJ2017, which is an improved version of the unified cross-section set ADJ2010 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses; the values are stored in the standard database for FBR core design via the cross-section adjustment methodology, which integrates with the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. The ADJ2017 is based on Japan's latest nuclear data library JENDL-4.0 as in the previous version of ADJ2010, and it incorporates more information on integral experimental data sets related to minor actinides (MAs) and degraded plutonium (Pu). In the creation of ADJ2010, a total of 643 integral experimental data sets were analyzed and evaluated, and 488 of the integral experimental data sets were finally selected to be used for the cross-section adjustment. In contrast, we have evaluated a total of 719 data sets, and eventually adopted 620 integral experimental data sets to create ADJ2017. ADJ2017 shows almost the same performance as ADJ2010 for the main neutronic characteristics of conventional sodium-cooled MOX-fuel fast reactors. In addition, for the neutronic characteristics related to MA and degraded Pu, ADJ2017 improves the C/E values of the integral experimental data sets, and reduces the uncertainty induced by the nuclear data. ADJ2017 is expected to be widely used in the analysis and design research of fast reactors. Moreover, it is expected that the integral experimental data sets used for ADJ2017 can be utilized as a standard database of FBR core design.

Journal Articles

CIELO collaboration summary results; International evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Kahler, A. C.*; Talou, P.*; Plompen, A. J.*; Schillebeeckx, P.*; et al.

Nuclear Data Sheets, 148, p.189 - 213, 2018/02

 Times Cited Count:49 Percentile:98.76(Physics, Nuclear)

The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear facilities - $$^{235}$$U, $$^{238}$$U, $$^{239}$$Pu, $$^{56}$$Fe, $$^{16}$$O and $$^{1}$$H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality. This report summarizes our results and outlines plans for the next phase of this collaboration.

Journal Articles

The CIELO collaboration; Progress in international evaluations of neutron reactions on Oxygen, Iron, Uranium and Plutonium

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Kahler, A. C.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Pigni, M.*; Dunn, M.*; Leal, L.*; et al.

EPJ Web of Conferences, 146, p.02001_1 - 02001_9, 2017/09

 Times Cited Count:6 Percentile:97.85

The CIELO collaboration has studied neutron cross sections on nuclides ($$^{16}$$O, $$^{56}$$Fe, $$^{235,238}$$U and $$^{239}$$Pu) that significantly impact criticality in nuclear technologies with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.

Journal Articles

Methods and approaches to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data files

Palmiotti, G.*; Salvatores, M.*; Yokoyama, Kenji; Ishikawa, Makoto

NEA/NSC/R(2016)6 (Internet), 42 Pages, 2017/05

Journal Articles

Model verification and validation procedure for a neutronics design methodology of next generation fast reactors

Ohgama, Kazuya; Ikeda, Kazumi*; Ishikawa, Makoto; Kan, Taro*; Maruyama, Shuhei; Yokoyama, Kenji; Sugino, Kazuteru; Nagaya, Yasunobu; Oki, Shigeo

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

Journal Articles

Improvement of estimation of $$^{131}$$I concentrations in the air using data measured by monitoring posts applied by determination of passing-through time of plume using noble gas counts

Yamada, Junya; Hashimoto, Makoto; Seya, Natsumi; Haba, Risa; Muto, Yasunobu; Shimizu, Takehiko; Takasaki, Koji; Yokoyama, Sumi*; Shimo, Michikuni*

Hoken Butsuri, 52(1), p.5 - 12, 2017/03

The purpose of this study is to improve a quick method for estimation of $$^{131}$$I concentrations in the air using data measured by monitoring posts in case that a nuclear disaster occurs. In this method, $$^{131}$$I concentrations were estimated by multiplying $$^{131}$$I count rates of cloud-shine measured with NaI (Tl) detector by concentration conversion factor. A previous study suggested that it was difficult to determine passing-through time of plume from temporal change of $$^{131}$$I count rates or dose rate. Our study applies the method for estimating passing-through time of plume from temporal change of noble gas counts. The $$^{131}$$I concentrations in the air at Oarai center, Japan Atomic Energy Agency resulting from the accident at the Fukushima Daiichi Nuclear Power Plant were estimated by proposal technique. The result of comparison of this method with sampling method for $$^{131}$$I concentrations in the air were within factor 3.

Journal Articles

Correlation effect in Sr$$_{1-x}$$La$$_x$$RuO$$_3$$ studied by soft X-ray photoemission spectroscopy

Kawasaki, Ikuto*; Sakon, Yumi*; Fujimori, Shinichi; Yamagami, Hiroshi; Tenya, Kenichi*; Yokoyama, Makoto*

Physical Review B, 94(17), p.174427_1 - 174427_7, 2016/11

 Times Cited Count:4 Percentile:26.78(Materials Science, Multidisciplinary)

Journal Articles

Calculation of conversion factor for estimation of $$^{131}$$I concentrations in the air from pulse-height distribution observed by NaI(Tl) detector in monitoring posts

Yamada, Junya; Hashimoto, Makoto; Seya, Natsumi; Haba, Risa; Muto, Yasunobu; Shimizu, Takehiko; Takasaki, Koji; Yokoyama, Sumi*; Shimo, Michikuni*

Radioisotopes, 65(10), p.403 - 408, 2016/10

The purpose of this study is to develop a quick method for estimation of $$^{131}$$I concentrations in the air using data measured by monitoring posts. In this method, $$^{131}$$I concentrations were estimated by multiplying $$^{131}$$I count rates at the full-energy peak measured with a NaI(Tl) detector by a concentration conversion factor. The concentration conversion factor for monitoring posts in JAEA Oarai Center was calculated with an EGS5 Monte Carlo code. As a result, the concentration conversion factor for an infinite-air-source was 25.7 Bq/m$$^{3}$$/cps.

Journal Articles

Development of a fast reactor for minor actinides transmutation; Improvement of prediction accuracy for MA-related integral parameters based on cross-section adjustment technique

Yokoyama, Kenji; Maruyama, Shuhei; Numata, Kazuyuki; Ishikawa, Makoto; Takeda, Toshikazu*

Proceedings of International Conference on the Physics of Reactors; Unifying Theory and Experiments in the 21st Century (PHYSOR 2016) (USB Flash Drive), p.1906 - 1915, 2016/05

Journal Articles

Use and impact of covariance data in a Japanese latest adjusted library ADJ2010 based on JENDL-4.0

Yokoyama, Kenji; Ishikawa, Makoto

Nuclear Data Sheets, 123, p.97 - 103, 2015/01

 Times Cited Count:8 Percentile:57.47(Physics, Nuclear)

The current status of covariance applications to fast reactor analysis and design in Japan is summarized. To improve the accuracy of core design values by adopting the integral data such as the critical experiments and the power reactor operation data, the cross-section adjustment based on the Bayesian theorem is used. After the release of JENDL-4.0, a development project of the new adjusted group-constant set ADJ2010 was started and completed in 2013. In the present paper, the final results of ADJ2010 are briefly described. In addition, the adjustment results of ADJ2010 are discussed from the viewpoint of use and impact of nuclear data covariances. For this purpose, three kind of indices, called "degree of mobility", "adjustment motive force", and "adjustment potential", are newly proposed.

Journal Articles

Evaluation of burnup reactivity coefficients measured in experimental fast reactor JOYO MK-I duty power operation cycles

Yokoyama, Kenji; Ishikawa, Makoto

Nuclear Science and Engineering, 178(3), p.350 - 362, 2014/11

 Times Cited Count:1 Percentile:10.7(Nuclear Science & Technology)

In order to provide a reactor physics benchmark problem of burnup reactivity coefficients, experimental data of relationship between excess reactivity and accumulated thermal power acquired during experimental fast reactor JOYO MK-I duty power operation in the late 1970s have been evaluated and analyzed. All possible uncertainty factors were evaluated and quantified by utilizing knowledge obtained after the MK-I duty power operation and calculation results based on the latest reactor physics analysis methods. Meanwhile, the present evaluated data have been registered to the International Reactor Physics Benchmark Experiments Project (IRPhEP), with the expectation that this data will be widely used. In the present paper, the evaluation of nominal values and uncertainties is described with a focus on the measurement technique uncertainty which is a dominant uncertainty factor of the burnup reactivity coefficient.

JAEA Reports

Study to improve recriticality evaluation methodology after severe accident (Joint research)

Kugo, Teruhiko; Ishikawa, Makoto; Nagaya, Yasunobu; Yokoyama, Kenji; Fukaya, Yuji; Maruyama, Hiromi*; Ishii, Yoshihiko*; Fujimura, Koji*; Kondo, Takao*; Minato, Hirokazu*; et al.

JAEA-Research 2013-046, 53 Pages, 2014/03


The present report summarizes the results of a 2-year cooperative study between JAEA and Hitachi-GE in order to contribute to the settlement of the Fukushima-Daiichi Nuclear Power Plants which suffered from the severe accident on March 2011. In the present study, the possible scenarios to reach the recriticality events in Fukushima-Daiichi were investigated first. Then, the analytical methodology to evaluate the time-dependent recriticality events has been developed by modelling the reactivity insertion rate and the possible feedback according to the recriticality scenarios identified in the first step. The methodology developed here has been equipped as a transient simulation tool, PORCAS, which is operated on a multi-purpose platform for reactor analysis, MARBLE. Finally, the radiation exposure rates by the postulated recriticality events in Fukushima-Daiichi were approximately evaluated to estimate the impact to the public environment.

JAEA Reports

Database for nuclear data sensitivity of burnup composition in light water reactors

Oizumi, Akito; Jin, Tomoyuki*; Yokoyama, Kenji; Ishikawa, Makoto; Kugo, Teruhiko

JAEA-Data/Code 2013-019, 278 Pages, 2014/02


In design work for nuclear fuel cycle plants, decommissioning facilities and light water reactors (LWRs), it has been feasible to quantitatively evaluate the uncertainty of fuel burnup characteristics with identifying error sources arising from the analytical modeling or the related physical property such as nuclear data. Owing to the recent improvement of sensitivity analysis method and enhancement of computer capability, this new evaluation technology would be a promising strategy against the current demand for quality assurance, verification & validation (V&V) and accountability. The present report summarizes nuclear-data sensitivity of atomic number densities after burnup for the LWR fuels of UO$$_{2}$$ and MOX in PWR and BWR. The analysis method is based on the generalized perturbation theory with JENDL-4.0 and a multi-purpose reactor analysis code MARBLE. The present study focuses on 35 fission products and 18 actinides. Sensitivities are calculated with respect to multigroup cross sections, half-lives and fission yields. Electronic files of the sensitivities are stored in a compact disk as a database. Important trends of the sensitivities are presented and their physical mechanisms are discussed. By incorporating the sensitivities with nuclear data covariance and post irradiation examination data, it would be possible to meet the demand for V&V and to break down the uncertainty due to nuclear data into dominant error sources. Thus, the sensitivities can be used to suggest the needs for nuclear data measurements and to extract those for reactor physics experiments in order to make the strategic deliberation of design rationalization.

Journal Articles

X-ray backscattering study of crystal lattice distortion in hidden order of URu$$_2$$Si$$_2$$

Tabata, Chihiro*; Inami, Toshiya; Michimura, Shinji*; Yokoyama, Makoto*; Hidaka, Hiroyuki*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*

Philosophical Magazine, 94(32-33), p.3691 - 3701, 2014/00

 Times Cited Count:14 Percentile:64.03(Materials Science, Multidisciplinary)

Journal Articles

Uncertainty evaluation for $$^{244}$$Cm production in spent fuel of light water reactor by using burnup sensitivity analysis

Oizumi, Akito; Yokoyama, Kenji; Ishikawa, Makoto; Kugo, Teruhiko

JAEA-Conf 2013-002, p.59 - 64, 2013/10

Journal Articles

Extended cross-section adjustment method to improve the prediction accuracy of core parameters

Yokoyama, Kenji; Ishikawa, Makoto; Kugo, Teruhiko

Journal of Nuclear Science and Technology, 49(12), p.1165 - 1174, 2012/12

 Times Cited Count:16 Percentile:79.93(Nuclear Science & Technology)

An extended cross-section adjustment method has been developed to improve the prediction accuracy of target core parameters. The present method is on the basis of a cross-section adjustment method which minimizes the uncertainties of target core parameters under the conditions that integral experimental data are given. The present method enables us to enhance the prediction accuracy better than the conventional cross-section adjustment method by taking into account the target core parameters, as well as the extended bias factor method. In addition, it is proved that the present method is equivalent to the extended bias factor method when only one target core parameter is taken into account. The present method is implemented in an existing cross-section adjustment solver. Numerical calculations verify the derived formulation and demonstrate an applicability of an adjusted cross-section set which is specialized for the target core parameters.

JAEA Reports

Development of a standard data base for FBR core design, 14; Analyses of extensive FBR core characteristics based on JENDL-4.0

Sugino, Kazuteru; Ishikawa, Makoto; Numata, Kazuyuki*; Iwai, Takehiko*; Jin, Tomoyuki*; Nagaya, Yasunobu; Hazama, Taira; Chiba, Go*; Yokoyama, Kenji; Kugo, Teruhiko

JAEA-Research 2012-013, 411 Pages, 2012/07


Aiming at evaluating the core design prediction accuracy of fast reactors, various kinds of fast reactor core experiments/tests have been analyzed with the Japan's latest evaluated nuclear data library JENDL-4.0. Totally 643 characteristics of reactor physics experiments/tests and irradiation tests performed using the critical facilities: ZPPR, FCA, ZEBRA, BFS, MASURCA, ultra-small cores of LANL and power plants: SEFOR, Joyo, Monju were dealt. In analyses, a standard scheme/method for fast reactor cores was applied including detailed or precise calculations for best estimation. In addition, results of analyses were investigated from the viewpoints of uncertainties caused by experiment/test, analytical modeling and cross-section data in order to synthetically evaluate the consistency among different cores and characteristics. Further, by utilizing these evaluations, prediction accuracy of core characteristics were evaluated for fast power reactor cores that are under designing in the fast reactor cycle technology development (FaCT) project.

Journal Articles

JENDL-4.0 integral testing for fission systems

Okumura, Keisuke; Sugino, Kazuteru; Chiba, Go; Nagaya, Yasunobu; Yokoyama, Kenji; Kugo, Teruhiko; Ishikawa, Makoto; Okajima, Shigeaki

Journal of the Korean Physical Society, 59(2), p.1135 - 1140, 2011/08

 Times Cited Count:2 Percentile:21.57(Physics, Multidisciplinary)

The new version of Japanese evaluated nuclear data library, JENDL-4.0, is tested with integral data of fission systems. This data testing is carried out with a wide range of integral data including the critical benchmarks preserved in the International Handbook of Evaluated Criticality Safety Benchmark Experiments, the experimental data of MOX-fueled critical assemblies relating to the plutonium aging effect, the critical data of various fast critical assemblies and the fast reactors JOYO and MONJU, and the post-irradiation examination data of the pressurized-water reactor Takahama-3 and the fast reactor JOYO. The benchmark calculations are performed with a continuous-energy Monte Carlo code MVP-II or a sophisticated deterministic neutron transport code system. Benchmark calculations with other libraries, such as JENDL-3.3, ENDF/B-VII.0 and JEFF-3.1, are also performed, and differences in performance of these libraries are discussed with a help of sensitivity profiles to nuclear data.

91 (Records 1-20 displayed on this page)