Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Abe, Yutaka*; Tsubakihara, Kosuke*; Okumura, Shin*; Ishizuka, Chikako*; Yoshida, Tadashi*; et al.
Journal of Nuclear Science and Technology, 60(1), p.1 - 60, 2023/01
Times Cited Count:144 Percentile:99.98(Nuclear Science & Technology)Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Seya, Natsumi; Nishimura, Shusaku; Hosomi, Kenji; Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; et al.
JAEA-Review 2020-069, 163 Pages, 2021/02
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2019 to March 2020. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; Matsubara, Natsumi; Maehara, Yushi; et al.
JAEA-Review 2016-035, 179 Pages, 2017/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2015 to March 2016. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju*; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; et al.
JAEA-Review 2015-034, 175 Pages, 2016/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2014 to March 2015. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co. in March 2011.
Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju; Morisawa, Masato; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; et al.
JAEA-Review 2014-042, 175 Pages, 2015/01
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2013 to March 2014. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.
Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.
Reza Kenkyu, 42(6), p.441 - 447, 2014/06
We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.
Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Nakada, Akira; Fujita, Hiroki; Takeyasu, Masanori; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; et al.
JAEA-Review 2013-056, 181 Pages, 2014/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2012 to March 2013. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.
Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Nagaoka, Mika; et al.
JAEA-Review 2013-009, 195 Pages, 2013/06
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2011 to March 2012. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in March 2011.
Kamiya, Kensaku; Ida, Katsumi*; Yoshinuma, Mikiro*; Suzuki, Chihiro*; Suzuki, Yasuhiro*; Yokoyama, Masayuki*; LHD Experimental Group*
Nuclear Fusion, 53(1), p.013003_1 - 013003_9, 2013/01
Times Cited Count:18 Percentile:60.29(Physics, Fluids & Plasmas)This paper provides and proposes a new technique to determine the location of the LCFS that is based on a characterization of the structure derived from CXS measurements in the LHD. We found that the spatial derivative in the structure had the local maximum value at the region very near, or possibly outside the vacuum LCFS location of vacuum magnetic field at the outer midplane in the low plasma.
Yokoyama, Kaoru; Sugitsue, Noritake; Muroi, Masayuki*; Suzuki, Yasuo*
Radioisotopes, 62(1), p.1 - 17, 2013/01
Radioactive waste generated from nuclear fuel facilities must have the acceptance criterion of disposal. Although the ray measurement technique is expected as the measurement technique, the correction for the influences of the heterogeneous waste distribution was needed. Therefore, the computational technique using the ray of two energies emitted from U progeny nuclide (Pa) was developed, and verified the validity with simulated waste. As a result, the relative error was less than 20%, and detection limit was 1.2 Bq/g.
Wakasa, Arimitsu*; Fukuyama, Atsushi*; Murakami, Sadayoshi*; Miki, Masayuki*; Yokoyama, Masayuki*; Sato, Masahiko*; Toda, Shinichiro*; Funaba, Hisamichi*; Tanaka, Kenji*; Ida, Katsumi*; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Ezato, Koichiro; Seki, Yohji; Tanigawa, Hisashi; Hirose, Takanori; Tsuru, Daigo; Nishi, Hiroshi; Dairaku, Masayuki; Yokoyama, Kenji; Suzuki, Satoshi; Enoeda, Mikio
Fusion Engineering and Design, 85(7-9), p.1255 - 1260, 2010/12
Times Cited Count:13 Percentile:63.99(Nuclear Science & Technology)no abstracts in English
Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki*; Shimomura, Takuya; Sasao, Hajime*; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Kondo, Shuji; Kanazawa, Shuhei; et al.
Reza Kenkyu, 38(9), p.669 - 675, 2010/09
This paper reviews the temporal contrast and spatial beam quality improvement techniques in a high intensity Ti:sapphire laser system that is based on chirped-pulse amplification (CPA). We describe a low gain optical parametric chirped-pulse amplification (OPCPA) preamplifier that uses high energy, clean pulse seeding and is shown to significantly improve the contrast to better than 10-10 relative to the peak of the main femtosecond pulse. We also report the use of a diffractive optical element for beam homogenization of a 100 J level Nd:glass green pump laser, achieving a flat-topped spatial profile with a filling factor near 80 %.
Tanaka, Kenji*; Kawahata, Kazuo*; Tokuzawa, Tokihiko*; Akiyama, Tsuyoshi*; Yokoyama, Masayuki*; Shoji, Mamoru*; Michael, C. A.*; Vyacheslavov, L. N.*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; et al.
Fusion Science and Technology, 58(1), p.70 - 90, 2010/07
Times Cited Count:26 Percentile:84.39(Nuclear Science & Technology)Particle confinement processes were studied in detail on LHD. Diffusion coefficients (D) and convection velocities (V) were estimated from density modulation experiments. The magnetic configuration and collisionality were widely scanned in order to investigate parameter dependences of D and V. In order to study the effect of the magnetic configuration, magnetic axis positions (R) were scanned from 3.5 m to 3.9 m. This scan changed the magnetic ripples quite significantly, enabling the effects of neoclassical properties on measured values to be widely elucidated. Dependences of electron temperature (T) and helically trapped normalized collsionality (), where =1 indicates a rough boundary between the 1/ and plateau regimes, were examined using the heating power scan of neutral beam injection (NBI). It was found out that generally larger (or smaller) contributions of neoclassical transport resulted in more hollow (or peaked) density profiles. The larger neoclassical contribution was found to be situated at a more outwardly shifted R for the same T, and higher T or lower at each R. However, it is to be noted that R=3.5 m showed different characteristics from these trends in that this case showed a more peaked density profile at higher T.
Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; et al.
JAEA-Conf 2010-002, p.18 - 21, 2010/06
We have developed a femtosecond high intensity laser system, which combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) techniques, that produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front-end in the system, for the final compressed pulse (without pumping the booster amplifier) we found that the temporal contrast in this system exceeds 10 on the sub-nanosecond timescale, and is near 10 on the nanosecond timescale before the main femtosecond pulse. Using diffractive optical elements for beam homogenization of 100-J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with near-perfect top-hat intensity distributions.
Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanoue, Manabu*; Kanazawa, Shuhei; Wakai, Daisuke*; Sasao, Fumitaka*; Okada, Hajime; et al.
Optics Letters, 35(10), p.1497 - 1499, 2010/05
Times Cited Count:85 Percentile:94.93(Optics)OPCPA (Optical parametric chirped-pulse amplification) operation with low gain by seeding with high energy, clean pulses is shown to significantly improve the contrast to better than - in a high intensity Ti:sapphire laser system that is based on chirped pulse amplification. In addition to the high contrast broadband high energy output from the final amplifier is achieved with a flat-topped spatial profile of filling factor near 77%. This is the result of pump beam spatial profile homogenization with diffractive optical elements. Final pulse energies exceed 30-Joules indicating capability for reaching peak powers in excess of 500-TW.
Ida, Katsumi*; Sakamoto, Yoshiteru; Yoshinuma, Mikiro*; Takenaga, Hidenobu; Nagaoka, Kenichi*; Hayashi, Nobuhiko; Oyama, Naoyuki; Osakabe, Masaki*; Yokoyama, Masayuki*; Funaba, Hisamichi*; et al.
Nuclear Fusion, 49(9), p.095024_1 - 095024_9, 2009/09
Times Cited Count:32 Percentile:74.02(Physics, Fluids & Plasmas)Dynamics of ion internal transport barrier (ITB) formation and impurity transport both in the Large Helical Device (LHD) heliotron and JT-60U tokamak are described. Significant differences between heliotron and tokamak plasmas are observed. The location of the ITB moves outward during the ITB formation regardless of the sign of magnetic shear in JT-60U and the ITB becomes more localized in the plasma with negative magnetic shear. In LHD, the low Te/Ti ratio ( 1) of the target plasma for the high power heating is found to be necessary condition to achieve the ITB plasma and the ITB location tends to expand outward or inward depending on the condition of the target plasmas. Associated with the formation of ITB, the carbon density tends to be peaked due to inward convection in JT-60U, while the carbon density becomes hollow due to outward convection in LHD. The outward convection observed in LHD contradicts the prediction by neoclassical theory.
Ezato, Koichiro; Seki, Yohji; Tanigawa, Hisashi; Hirose, Takanori; Tsuru, Daigo; Nishi, Hiroshi; Dairaku, Masayuki; Yokoyama, Kenji; Suzuki, Satoshi; Enoeda, Mikio
Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) (CD-ROM), 12 Pages, 2009/09
In-vessel components such as Blanket and Divertor in a fusion reactor have a function of exhausting high heat and particle loads in order to maintain the structural soundness of the reactor. In the International Thermonuclear Experimental Reactor called ITER, build by ITER Organization under the framework of collaboration of seven parties including Japan, there are two kinds of blanket systems will be install. One is a shield blanket, which consists of a first wall (FW) and a block module shielding against neutron flux to a vacuum chamber and a superconducting magnet system. The other blanket system is called as a Test Blanket Module (TBM). TBM is a kind of prototype blanket for a fusion power plant and has functions of breeding of tritium (T) and extraction of energy from fusion plasma. TBM consists of FW and T-breeding/neutron (n)-multiplier zone. A concept of TBM developed by JAEA is water-cooled pebble-bed type, which means that FW and other structures are cooled by pressurized high temperature water and T-breeding/n-multiplier zone consists of multiple layers of pebble bed made of T-breeding and n-multiplier material. This paper describes the status of R&Ds on FW and pebble beds from the view of thermo-hydraulics and mechanics.
Tsuru, Daigo; Enoeda, Mikio; Hirose, Takanori; Tanigawa, Hisashi; Ezato, Koichiro; Yokoyama, Kenji; Dairaku, Masayuki; Seki, Yohji; Suzuki, Satoshi; Mori, Kensuke*; et al.
Fusion Science and Technology, 56(2), p.875 - 882, 2009/08
Times Cited Count:7 Percentile:44.26(Nuclear Science & Technology)As the primary candidate of ITER Test Blanket Module (TBM) for the first day of ITER operation, development of Water Cooled Solid Breeder (WCSB) TBM has been performed toward the TBM milestones, which are necessary for acceptance of the TBM in ITER for testing from the first day of plasma operation. Milestones of ITER TBMs prior to the installation consist of milestones on safety assessment, module qualification and design integration in ITER. This paper overviews the recent achievements for preparation of the WCSB TBM for ITER day-1 operation, toward the TBM milestones.