Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 57

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Dispersive XAFS Study on the Laser-Induced Reduction of a Rh$$^{3+}$$ ion complex; Presence of a Rh$$^{+}$$ Intermediate in Direct Photoreduction

Saeki, Morihisa*; Matsumura, Daiju; Nakanishi, Ryuzo*; Yomogida, Takumi; Tsuji, Takuya; Saito, Hiroyuki*; Oba, Hironori*

Journal of Physical Chemistry C, 126(12), p.5607 - 5616, 2022/03

The reaction mechanism of the direct photoreduction of a Rh$$^{3+}$$ ion complex to a Rh$$^{0}$$ species induced by pulsed ultraviolet laser irradiation was studied using dispersive X-ray absorption fine structure (DXAFS) spectroscopy. The time-resolved X-ray absorption near edge structure (XANES) showed the absence of isosbestic points and suggested that more than two Rh$$^{n+}$$ species contribute toward the direct photoreduction of Rh$$^{3+}$$. Analysis of the time-resolved XANES data by singular value deposition showed that the direct photoreduction involves three Rh$$^{n+}$$ species. Multivariate curve resolution by alternating least-squares analysis (MCR-ALS) of the time-resolved XANES data gave pure spectra and concentration profiles of the three Rh$$^{n+}$$ species. The Rh$$^{n+}$$ species were assigned to Rh$$^{3+}$$, Rh$$^{+}$$, and Rh$$^{0}$$ species based on the features of the pure XANES spectra. The concentration profiles suggested that the direct photoreduction proceeds in the order of Rh$$^{3+}$$ $$rightarrow$$ Rh$$^{+}$$ $$rightarrow$$ Rh$$^{0}$$. A reaction mechanism, which was proposed involving photoreductions of Rh$$^{3+}$$ and Rh$$^{+}$$, photoinduced autocatalytic reductions of Rh$$^{3+}$$ and Rh$$^{+}$$, and photooxidation of Rh$$^{+}$$, well reproduced the concentration profiles of three Rh$$^{n+}$$ species.

Journal Articles

Selective Pd separation from simulated radioactive liquid waste by precipitation using xenon lamp irradiation for a simplified procedure

Yomogida, Takumi; Saeki, Morihisa*; Morii, Shiori; Oba, Hironori*; Kitatsuji, Yoshihiro

Analytical Sciences, 37(12), p.1843 - 1846, 2021/12

In this study, we developed a simple and one-step Pd separation technique based on photoreduction with Xe lamp irradiation for the determination of $$^{107}$$Pd in highly radioactive samples. A simulated high-level radioactive liquid wastes (HLLW) solution, which consists of 14 major elements (Rb, Sr, Zr, Mo, Ru, Rh, Pd, Cs, Ba, La, Ce, Pr, Nd, Sm) in a 3 mol L$$^{-1}$$ HNO$$_{3}$$ solution, was used to evaluate the separation performance. The Pd precipitate were formed by Xe lamp irradiation and recovered by centrifugation. The results showed that the recovery of Pd from a simulated HLLW solution depend on the irradiation time and concentration of ethanol. By optimizing the conditions at photo irradiation, the Pd recovery from the simulated HLLW solution reached up to 50 %, while 99.5 % of the other 13 elements were separated. The Pd precipitate could be separated from the elements that are the main source of radioactivity (Sr, Cs, and Ba) and the source of spectral interference for the determination of $$^{107}$$Pd (Zr, and Ru). These results indicate that selective separation of Pd is achieved with the proposed method, showing the applicability of the proposed separation technique to HLLW samples.

Journal Articles

Optimization of SIMS-APM for high enrichment uranium particles including higher uranium hydride

Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

KEK Proceedings 2021-2, p.146 - 150, 2021/12

no abstracts in English

Journal Articles

Distribution of studtite and metastudtite generated on the surface of U$$_{3}$$O$$_{8}$$; Application of Raman imaging technique to uranium compound

Kusaka, Ryoji; Kumagai, Yuta; Yomogida, Takumi; Takano, Masahide; Watanabe, Masayuki; Sasaki, Takayuki*; Akiyama, Daisuke*; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Science and Technology, 58(6), p.629 - 634, 2021/06

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Application of an augmentation method to MCR-ALS analysis for XAFS and Raman data matrices in the structural change of isopolymolybdates

Saeki, Morihisa*; Yomogida, Takumi; Matsumura, Daiju; Saito, Takumi*; Nakanishi, Ryuzo*; Tsuji, Takuya; Oba, Hironori*

Analytical Sciences, 36(11), p.1371 - 1378, 2020/11

 Times Cited Count:0 Percentile:0(Chemistry, Analytical)

We measured X-ray absorption fine structure (XAFS) and Raman spectra of isopolymolybdates(VI) in HNO$$_{3}$$ solution (0.15- 4.0 M), which change their geometries depending on acid concentration, and performed simultaneous resolution of the XAFS and Raman data using a multivariate curve resolution by alternating least-squares (MCR-ALS) analysis. In iterative ALS optimization, initial data matrices were prepared by two different methods. The MCR-ALS result of single XAFS data matrix shows large dependence on the preparation method of the initial data matrices. The MCR-ALS result of an augmented matrix of Raman and XAFS data has little dependence on the initial data matrices. It indicates that the augmentation method effectively improves the rotation ambiguities in the MCR-ALS analysis of the XAFS data. Based on the model fitting of the pure EXAFS oscillations, we revealed the change of [Mo$$_{36}$$O$$_{112}$$(H$$_{2}$$O)$$_{16}$$]$$^{2+}$$ $$rightarrow $$ [Mo$$_{2}$$O$$_{5}$$(H$$_{2}$$O)$$_{6}$$]$$^{2+}$$ $$rightarrow $$ [HMoO$$_{3}$$(H$$_{2}$$O)$$_{3}$$]$$^{+}$$ in the highly concentrated HNO$$_{3}$$ solution.

Journal Articles

Direct quantitation of $$^{135}$$Cs in spent Cs adsorbent used for the decontamination of radiocesium-containing water by laser ablation inductively coupled plasma mass spectrometry

Asai, Shiho*; Ohata, Masaki*; Hanzawa, Yukiko; Horita, Takuma; Yomogida, Takumi; Kitatsuji, Yoshihiro

Analytical Chemistry, 92(4), p.3276 - 3284, 2020/02

 Times Cited Count:2 Percentile:41.67(Chemistry, Analytical)

The long-term safety assessment of spent Cs adsorbents produced during the decontamination of radiocesium-containing water at the Fukushima Daiichi Nuclear Power Plant requires one to estimate their $$^{135}$$Cs content prior to final disposal. $$^{135}$$Cs is usually quantified by inductively coupled plasma mass spectrometry (ICP-MS), which necessitates the elution of Cs from Cs adsorbents. However, this approach suffers from the high radiation dose from $$^{137}$$Cs. To address this challenge, we herein employed laser ablation ICP-MS for direct quantitation of $$^{135}$$Cs in Cs adsorbents and used a model Cs adsorbent prepared by immersion of a commercially available Cs adsorbent into radiocesium-containing liquid waste to verify the developed technique. The use of the $$^{135}$$Cs/$$^{137}$$Cs ratio and $$^{137}$$Cs radioactivity obtained by gamma spectrometry achieved simple and precise quantitation of $$^{135}$$Cs and the resulting $$^{135}$$Cs activity of 0.36 Bq agreed well with that in the original radiocesium-containing liquid waste.

Journal Articles

Determination of $$^{107}$$Pd in Pd purified by selective precipitation from spent nuclear fuel by laser ablation ICP-MS

Asai, Shiho; Ohata, Masaki*; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro

Analytical and Bioanalytical Chemistry, 411(5), p.973 - 983, 2019/02

 Times Cited Count:5 Percentile:57.47(Biochemical Research Methods)

Determination of radiopalladium $$^{107}$$Pd is required for ensuring the radiation safety of Pd extracted from spent nuclear fuel for recycling or disposal. We employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to simplify an analytical procedure of $$^{107}$$Pd. Pd was separated through selective Pd precipitation reaction from spent nuclear fuel. Laser ablation allows direct measurement of the Pd precipitates, skipping the dissolution and dilution procedure. In this study, $$^{102}$$Pd in natural Pd standard solution was used as an internal standard, taking advantage of its absence in spent nuclear fuel. The Pd precipitate was uniformly embedded on the surface of the centrifugal filter, forming a microscopically thin flat surface of Pd. The resulting homogeneous Pd layer is suitable for obtaining a stable signal ratio of $$^{107}$$Pd/$$^{102}$$Pd. The amount of $$^{107}$$Pd obtained by LA-ICP-MS corresponds to the values obtained by conventional solution nebulization measurement.

Journal Articles

In Situ Time-Resolved XAFS Studies on Laser-induced Particle Formation of Palladium Metal in an Aqueous/EtOH solution

Saeki, Morihisa*; Matsumura, Daiju; Yomogida, Takumi; Taguchi, Tomitsugu*; Tsuji, Takuya; Saito, Hiroyuki*; Oba, Hironori*

Journal of Physical Chemistry C, 123(1), p.817 - 824, 2019/01

 Times Cited Count:6 Percentile:37.24(Chemistry, Physical)

Reaction kinetics of laser-induced particle formation in an aqueous solution of PdCl$$_{4}$$$$^{2-}$$ was investigated by transmission electron microscope (TEM) and dispersive X-ray absorption fine structure (DXAFS). The Pd particle was generated by irradiation of nanosecond pulsed 266-nm laser. The TEM observation showed dependence of the particle size on the laser fluence and promotion of the particle growth by irradiation of high-fluence laser. The DXAFS data give us the Pd$$^{2+}$$ concentration. Temporal changes of the Pd$$^{2+}$$ concentration analyzed based on Finke-Watzky two step mechanism. The analysis elucidates that the laser photon contributes to the reduction of the PdCl$$_{4}$$$$^{2-}$$ ion by the one-photon process and to the autocatalytic growth of the Pd particles by the multi-photon process.

Journal Articles

Chemical state and isotope ratio analysis of individual uranium particles by a combination of micro-Raman spectroscopy and secondary ion mass spectrometry

Yomogida, Takumi; Esaka, Fumitaka; Magara, Masaaki

Analytical Methods, 9(44), p.6261 - 6266, 2017/11

 Times Cited Count:6 Percentile:54.34(Chemistry, Analytical)

A combination of micro-sampling, micro-Raman spectroscopy (MRS), and secondary ion mass spectrometry (SIMS) was applied to the characterization of individual uranium particles. Reference particles with U$$_{3}$$O$$_{8}$$ (NBL CRM U010) and UO$$_{2}$$ were identified by scanning electron microscopy combined with energy dispersive X-ray detection (SEM-EDX) and transferred onto grassy carbon substrates by micro-sampling. The crystalline phases of the reference particles with diameters ranging from 1 $$mu$$m to 5 $$mu$$m were determined non-destructively by using MRS thanks to the optimization of laser power at the measurement. Isotope ratios were also determined with SIMS after the MRS analysis and were consistent with values in the literature. These results indicate that chemical forms and isotope ratios of individual uranium particles as small as 1 $$mu$$m can be analyzed efficiently by using the proposed method.

Journal Articles

Non-contact and selective Pd separation based on laser-induced photoreduction for determination of $$^{107}$$Pd by ICP-MS; The Relation between separation conditions and Pd recovery

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa*; Hanzawa, Yukiko; Horita, Takuma; Esaka, Fumitaka; Oba, Hironori*; Kitatsuji, Yoshihiro

Bunseki Kagaku, 66(9), p.647 - 652, 2017/09

 Times Cited Count:1 Percentile:5.18(Chemistry, Analytical)

Palladium-107 is a long-lived fission product, which can be found in high-level radioactive liquid wastes (HLLW). Determination of the $$^{107}$$Pd contents in HLLW is essential to evaluate the long-term safety of HLLW repositories. However, the $$^{107}$$Pd content in HLLW has not been reported because of difficulties in pretreatment for the measurement. In this study, we investigated applicability of laser-induced photoreduction to HLLW solution: it enables a simple and non-contact separation of Pd. The results showed the recovery of 60% was achieved at the conditions: 40% ethanol, 20 min irradiation, 100 mJ of pulse energy. Additionally, major radionuclides and potentially interfering components in ICP-MS were removed from the simulated HLLW over a wide concentration range of Pd from 0.24 to 24 mg L$$^{-1}$$, showing the applicability of the proposed separation technique to HLLW samples.

Journal Articles

Study on laser-induced particle formation of palladium ion by time-resolved X-ray spectroscopy

Saeki, Morihisa*; Taguchi, Tomitsugu*; Oba, Hironori*; Matsumura, Daiju; Tsuji, Takuya; Yomogida, Takumi

Denki Gakkai Kenkyukai Shiryo, Denshi Zairyo Kenkyukai (EFM-17-010$$sim$$021), p.15 - 18, 2017/09

Irradiation of nanosecond pulsed UV laser into a solution of palladium ion leads to formation of palladium particles with sub-micron size particles by time-resolved X-ray absorption spectroscopy.

Journal Articles

Determination of $$^{107}$$Pd in Pd recovered by laser-induced photoreduction with inductively coupled plasma mass spectrometry

Asai, Shiho; Yomogida, Takumi; Saeki, Morihisa*; Oba, Hironori*; Hanzawa, Yukiko; Horita, Takuma; Kitatsuji, Yoshihiro

Analytical Chemistry, 88(24), p.12227 - 12233, 2016/12

 Times Cited Count:10 Percentile:47.49(Chemistry, Analytical)

Safety evaluation of a radioactive waste repository requires credible activity estimates confirmed by actual measurements. A long-lived radionuclide, $$^{107}$$Pd, which can be found in radioactive wastes, is one of the difficult-to-measure nuclides and results in a deficit in experimentally determined contents. In this study, a precipitation-based separation method has been developed for the determination of $$^{107}$$Pd with ICP-MS. The photoreduction induced by laser irradiation at 355 nm provides short-time and one-step recovery of Pd. The proposed method was verified by applying it to a spent nuclear fuel sample. In order to efficiently recover Pd, a natural Pd standard was employed as the Pd carrier. The chemical yield of Pd was about 90% with virtually no impurities, allowing accurate quantification of $$^{107}$$Pd.

Journal Articles

Application of automated particle screening for effective analysis of individual uranium particles by thermal ionization mass spectrometry

Esaka, Fumitaka; Suzuki, Daisuke; Yomogida, Takumi; Magara, Masaaki

Analytical Methods, 8(7), p.1543 - 1548, 2016/02

AA2015-0572.pdf:0.66MB

 Times Cited Count:7 Percentile:56.39(Chemistry, Analytical)

The isotope ratio analysis of individual uranium particles in environmental samples taken at nuclear facilities is important to clarify their origins for nuclear safeguards. In the present study, automated particle screening was used to select uranium particles prior to precise isotope ratio analysis by thermal ionization mass spectrometry (TIMS). As a result, molecular ion interferences on the uranium mass region were able to be almost completely avoided in the analysis of real inspection samples using APM-TIMS. Therefore, the performance of APM-TIMS was sufficient for obtaining isotope ratio data of individual particles without molecular ion interferences.

Oral presentation

Development of analytical methods for $$^{107}$$Pd in high-level radioactive wastes using laser-induced particle formation

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Magara, Masaaki

no journal, , 

$$^{107}$$Pd contained in high-level radioactive wastes (HLW) is a long-lived fission product. The procedure for $$^{107}$$Pd determination in HLW is demanded for safety assessment of geological disposal. Radiation measurement is difficult due to very low energy of beta radiation of $$^{107}$$Pd. Chemical separations and mass spectrometry methods are superior to the radiation measurement, but it has some problems on complicated analysis processes and $$^{107}$$Ag isobar contamination. We performed a novel procedure for $$^{107}$$Pd determination by laser-induced particle formation to overcome those problems. In this study, Pd separation by laser-induced particle formation was applied to the analysis of simulated HLW solutions. ICP-MS measurements demonstrated that the recovery ratio of Pd depended on solutions and ethanol concentrations in laser irradiation. The low contamination ratio indicated the high elemental selectivity of laser-induced particle formation.

Oral presentation

Development of Pd separation technique based on laser-induced particle formation for determination of $$^{107}$$Pd in HLW with ICP-MS

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Magara, Masaaki

no journal, , 

Inventory estimation of long-lived fission products (LLFPs) in high-level radioactive waste (HLW) is indispensable for the long-term safety assessment of geological repository. Reliability of the estimated inventory is verified with actual measurement values which are drawn from proven analytical techniques. There has been increasing interest in the development of new determination methods of Pd-107 which is one of the LLFPs with a half-life of 6.5$$times$$10$$^{6}$$ y because little measured data has been reported. Major difficulty in determination of Pd-107 involves the poor recovery of Pd in separation step required prior to measurement. In this study, a highly selective separation technique based on laser-induced microparticle formation has been applied to Pd separation. The recovery percentage of Pd from a simulated HLW solution were affected by irradiation time and laser pulse energy. The maximum recovery percentage of 60% was achieved by 20-min irradiation at the energy of 100 mJ.

Oral presentation

Isotopic analysis of individual uranium particles by secondary ion mass spectrometry using automated particle measurement

Esaka, Fumitaka; Suzuki, Daisuke; Yomogida, Takumi; Magara, Masaaki

no journal, , 

Analysis of individual uranium particles in environmental samples taken at nuclear facilities enables to clarify nuclear activities in the facilities. In particular, the detection of high enriched uranium particles is important to unveil nuclear activities related to the production of nuclear weapons. In this study, we developed analytical techniques by the combination of secondary ion mass spectrometry (SIMS) or thermal ionization mass spectrometry with automated particle measurement. The results indicated that these techniques are efficient to detect high enriched uranium particles.

Oral presentation

Development of an analytical method to identify chemical forms of uranium particles with micro-meter size using micro-Raman spectroscopy

Yomogida, Takumi; Esaka, Fumitaka; Magara, Masaaki

no journal, , 

Chemical forms of particles in environmental samples give important information on the history of particles. In particular, we can detect the nuclear activities such as refining, conversion and enrichment process by determination of the chemical form of uranium particles. In this study, we developed a micro-Raman spectroscopy technique combined with particle detection by scanning electron microscope (SEM) and micro manipulation to identify chemical forms of standard uranium particles. The characteristic Raman bands which derive from U$$_{3}$$O$$_{8}$$ structures were observed in the Raman spectra of a standard uranium particle with a diameter of 2 $$mu$$m.

Oral presentation

XAFS study on effect of molybdenum addition on photo-induced particle formation of palladium

Saeki, Morihisa; Matsumura, Daiju; Yomogida, Takumi; Taguchi, Tomitsugu; Tsuji, Takuya; Kusano, Shogo*; Miyazaki, Tatsuya*; Takao, Koichiro*; Oba, Hironori; Nakashima, Nobuaki*

no journal, , 

Recently, we found that photo-induced particle formation of Pd$$^{2+}$$ was promoted by coexistence of molybdenum anion in aqueous solution. In this study, we performed in-situ time-resolved XAFS measurement in the photoreduction of Pd$$^{2+}$$ in presence of various concentration of molybdenum anion. The effect of molybdenum addition on photo-induced particle formation of Pd will be discussed based on the relationship between the photoreduction rate of Pd$$^{2+}$$ and the concentration of molybdenum anion.

Oral presentation

Development of Pd separation technique based on laser-induced particle formation for determination of $$^{107}$$Pd in radioactive wastes with mass spectrometry

Yomogida, Takumi; Asai, Shiho; Saeki, Morihisa; Hanzawa, Yukiko; Esaka, Fumitaka; Oba, Hironori; Kitatsuji, Yoshihiro

no journal, , 

Palladium-107, which is one of the long-lived fission products in high-level radioactive waste (HLW), is a pure beta emitter with a half-life of 6.5$$times$$10$$^{6}$$ y. The inventory estimation of $$^{107}$$Pd is demanded for the long-term safety assessment of geological repository. ICP-MS is suitable for the determination of $$^{107}$$Pd because radiometry with a low beta energy of 33 keV is practically inapplicable. However, cumbersome chemical separation accompanied with highly radioactive sample treatment is still necessary prior to the measurement with ICP-MS. To minimize radioactive contamination and radiation exposure, simplified procedure is desirable. In this study, a simple separation technique based on laser-induced microparticle formation has been applied to Pd separation in a simulated HLW solution. Sufficiently high decontamination factors of coexisting elements ($$>$$ 1000) were observed, indicating that the proposed method achieved highly-selective separation of Pd.

Oral presentation

XAFS study on effect of molybdenum addition on photo-induced particle formation of palladium

Saeki, Morihisa; Matsumura, Daiju; Yomogida, Takumi; Taguchi, Tomitsugu; Tsuji, Takuya; Kusano, Shogo*; Miyazaki, Tatsuya*; Takao, Koichiro*; Oba, Hironori; Nakashima, Nobuaki*

no journal, , 

no abstracts in English

57 (Records 1-20 displayed on this page)