検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Thermoelectric generation based on spin Seebeck effects

内田 健一*; 安立 裕人; 吉川 貴史*; 桐原 明宏*; 石田 真彦*; 萬 伸一*; 前川 禎通; 齊藤 英治*

Proceedings of the IEEE, 104(10), p.1946 - 1973, 2016/10

 被引用回数:149 パーセンタイル:99.24(Engineering, Electrical & Electronic)

The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in magnetic materials including insulators. The SSE is applicable to thermoelectric generation because the thermally generated spin current can be converted into a charge current via spin-orbit interaction in conductive materials adjacent to the magnets. The insulator-based SSE device exhibits unconventional characteristics potentially useful for thermoelectric applications, such as simple structure, device-design exibility, and convenient scaling capability. In this article, we review recent studies on the SSE from the viewpoint of thermoelectric applications.

論文

Spin-current-driven thermoelectric coating

桐原 明宏*; 内田 健一*; 梶原 瑛祐*; 石田 真彦*; 中村 泰信*; 眞子 隆志*; 齊藤 英治; 萬 伸一*

Nature Materials, 11(8), p.686 - 689, 2012/08

 被引用回数:202 パーセンタイル:98.62(Chemistry, Physical)

Energy harvesting technologies, which generate electricity from environmental energy, have been attracting great interest because of their potential to power ubiquitously deployed sensor networks and mobile electronics. Of these technologies, thermoelectric (TE) conversion is a particularly promising candidate, because it can directly generate electricity from the thermal energy that is available in various places. Here we show a novel TE concept based on the spin Seebeck effect, called "spin-thermoelectric (STE) coating", which is characterized by a simple film structure, convenient scaling capability, and easy fabrication. The STE coating, with a 60-nm-thick bismuth-substituted yttrium iron garnet (Bi:YIG) film, is applied by means of a highly efficient process on a non-magnetic substrate. Notably, spin-current-driven TE conversion is successfully demonstrated under a temperature gradient perpendicular to such an ultrathin STE-coating layer (amounting to only 0.01% of the total sample thickness). We also show that the STE coating is applicable even on glass surfaces with amorphous structures. Such a versatile implementation of the TE function may pave the way for novel applications making full use of omnipresent heat.

2 件中 1件目~2件目を表示
  • 1