Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yoshida, Masato; Iguchi, Satoshi; Hirano, Hiroshi*; Kitamura, Akihiro
Nuclear Engineering and Design, 431, p.113691_1 - 113691_16, 2025/01
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The Plutonium Fuel Fabrication Facility is currently in the decommissioning phase, with glovebox dismantling operations ongoing since 2010. During conventional glovebox dismantling operations, the glovebox to be dismantled is enclosed within plastic tents to contain contamination. The glovebox is then dismantled by workers wearing air-fed suits with thermal or mechanical cutting tools, which typically generate dross or sparks in the form of radioactive aerosols during cutting. Despite the longevity and meticulous organization of this manual method, the workload remains considerable, while the allowable working time is limited. In addition, the potential for inhalation exposure to plutonium is elevated in the event of an accident given the contamination of the work area. To overcome disadvantages associated with conventional glovebox dismantling methods, new methods are currently being developed. The primary objective is to reduce the reliance on operation based on air-fed suits and enhance worker safety by introducing remote equipment and a new floor-reinforcing panel. Another objective is to suppress waste generation by reusing all equipment on multiple occasions which is achieved by developing a containment system that have a large open port with a pallet for the storage and reuse of equipment for successive operations. Furthermore, a glove operation compartment is designed and tested for the manual handling of dismantled materials as an additional strategy to reduce work based on air-fed suits and mitigate secondary waste generation.
Tsutsui, Satoshi; Ito, Takashi; Nakamura, Jin*; Yoshida, Mio*; Kobayashi, Yoshio*; Yoda, Yoshitaka*; Nakamura, Jumpei*; Koda, Akihiro*; Higashinaka, Ryuji*; Aoki, Dai*; et al.
Interactions (Internet), 245(1), p.55_1 - 55_9, 2024/12
Yoshida, Go*; Matsumura, Hiroshi*; Nakamura, Hajime*; Miura, Taichi*; Toyoda, Akihiro*; Masumoto, Kazuyoshi*; Nakabayashi, Takayuki*; Matsuda, Makoto
Journal of Nuclear Science and Technology, 61(10), p.1298 - 1307, 2024/10
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Kitamura, Akihiro; Hirano, Hiroshi*; Yoshida, Masato
Nuclear Engineering and Design, 411, p.112435_1 - 112435_14, 2023/09
Times Cited Count:1 Percentile:34.39(Nuclear Science & Technology)This study presents the features and brief history of the glovebox dismantling facility and the primary dismantlement results. Subsequently, we evaluate the novelties of the facility from operational experiences in manual and remote glovebox dismantlement methods and discuss their characteristics. Furthermore, we evaluate the worker exposure dose based on the obtained data. Finally, we show how these experiences are effectively fed back to the technological dismantlement development for our decommissioning project.
Shibanuma, Tomohiro; Hirano, Hiroshi*; Kimura, Yasuhisa; Aita, Takahiro; Yoshida, Masato; Nagai, Yuya; Kitamura, Akihiro
Hoken Butsuri (Internet), 58(2), p.91 - 98, 2023/08
We developed new containment tents that are more easily assembled and effectively functioned, by improving and refurbishing the shortcomings of the conventional tents. The new tents have been already tested in the real airborne contamination situation occurred at the plutonium fuel fabricating facility. The tents appropriately functioned for intended use but other shortcomings emerged and therefore we had modified the structure of the tents further.
Kitamura, Akihiro; Hirano, Hiroshi*; Yoshida, Masato; Takeuchi, Kentaro
Hoken Butsuri (Internet), 58(2), p.76 - 90, 2023/08
The alpha contaminated gloveboxes have been dismantled for over 20 years in Plutonium Fuel Fabrication Facility. The so called wet recovery equipment gloveboxes, which recover plutonium and uranium from scrap fuel by dissolving and extracting processes, were chosen as the priority gloveboxes to be dismantled. These gloveboxes and other gloveboxes in the same room were size reduced and removed up until 2022. Also, non-radioactive ancillary facility and non-radioactive giant glovebox were removed from 2007 to 2010 for ease of glovebox dismantling activities that follows and for making waste storage spaces. Several incidents were occurred and recidivism prevention measures were implemented on each occasion. In this report, glovebox dismantling activities we conducted in the past 20 years are reviewed and lessons we have learned are summarized.
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:21 Percentile:95.78(Multidisciplinary Sciences)no abstracts in English
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:3 Percentile:69.58(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.
ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04
Times Cited Count:6 Percentile:81.73(Chemistry, Multidisciplinary)The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.
Sakoda, Akihiro; Nomura, Naoki*; Kuroda, Yujiro*; Kono, Takahiko; Naito, Wataru*; Yoshida, Hiroko*
Journal of Radiological Protection, 41(4), p.1258 - 1287, 2021/12
Times Cited Count:1 Percentile:7.84(Environmental Sciences)Following the Fukushima Daiichi Nuclear Power Plant accident, many radiation experts directly experienced a vast gap between ideal and real public understanding (PU) of radiation in risk communication. Therefore, this study collated and reviewed information about PU activities for radiation and its risk that six Japanese academic societies - which seemed to be socially neutral expert communities - related to radiation and radiation risk conducted before and after the accident. Activities these radiation-related societies provided to general public were discussed from the following perspectives: (1) difficulties in two-way communication due to resources, motivation, public interest and concerns; (2) balance between academic research and PU activities; (3) academic societies' building trust with the public whilst ensuring member experts' neutrality and independence; (4) discussions among academic societies to prepare for public engagement. We hope that this paper encourages experts and academic societies in radiation protection to hold more national and international discussions about their roles in public communication and outreach.
Ideta, Shinichiro*; Johnston, S.*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Mori, Michiyasu; Anzai, Hiroaki*; Ino, Akihiro*; Arita, Masashi*; Namatame, Hirofumi*; Taniguchi, Masaki*; et al.
Physical Review Letters, 127(21), p.217004_1 - 217004_6, 2021/11
Times Cited Count:9 Percentile:64.51(Physics, Multidisciplinary)Yoshida, Hiroko*; Kuroda, Yujiro*; Kono, Takahiko; Naito, Wataru*; Sakoda, Akihiro
Journal of Radiation Protection and Research, 46(3), p.134 - 142, 2021/09
The Japan Health Physics Society established a task group on "Public Understanding after the Fukushima Daiichi Nuclear Power Plant Accident" in the 2018-2019 fiscal year. This task group collected and analyzed various activities that had been made for promotion of public understanding since the Fukushima accident, and then discussed some issues such as expert's roles. This paper outlines a panel session for this task group held at the 53rd Annual Meeting of the Japanese Health Physics Society (Online). This session consisted of (1) reporting what the task group achieved, (2) having comments by two designated experts in the fields of sociology and ethics, (3) making a panel discussion with three representatives from the task group and the two designated speakers, and (4) summarizing this session by a rapporteur.
Nakagawa, Akinori; Oyokawa, Atsushi; Murakami, Masashi; Yoshida, Yukihiko; Sasaki, Toshiki; Okada, Shota; Nakata, Hisakazu; Sugaya, Toshikatsu; Sakai, Akihiro; Sakamoto, Yoshiaki
JAEA-Technology 2021-006, 186 Pages, 2021/06
Radioactive wastes generated from R&D activities have been stored in Japan Atomic Energy Agency. In order to reduce the risk of taking long time to process legacy wastes, countermeasures for acceleration of waste processing and disposal were studied. Work analysis of waste processing showed bottleneck processes, such as evaluation of radioactivity concentration, segregation of hazardous and combustibles materials. Concerning evaluation of radioactivity concentration, a radiological characterization method using a scaling factor and a nondestructive gamma-ray measurement should be developed. The number of radionuclides that are to be selected for the safety assessment of the trench type disposal facility can decrease using artificial barriers. Hazardous materials, will be identified using records and nondestructive inspection. The waste identified as hazardous will be unpacked and segregated. Preliminary calculations of waste acceptance criteria of hazardous material concentrations were conducted based on environmental standards in groundwater. The total volume of the combustibles will be evaluated using nondestructive inspection. The waste that does not comply with the waste acceptance criteria should be mixed with low combustible material waste such as dismantling concrete waste in order to satisfy the waste acceptance criteria on a disposal facility average. It was estimated that segregation throughput of compressed waste should be increased about 5 times more than conventional method by applying the countermeasures. Further study and technology development will be conducted to realize the plan.
Yoshida, Hiroko*; Kuroda, Yujiro*; Kono, Takahiko; Naito, Wataru*; Sakoda, Akihiro
Hoken Butsuri (Internet), 55(4), p.257 - 263, 2020/12
no abstracts in English
Naito, Wataru*; Uesaka, Motoki*; Kuroda, Yujiro*; Kono, Takahiko; Sakoda, Akihiro; Yoshida, Hiroko*
Radioprotection, 55(4), p.297 - 307, 2020/10
Times Cited Count:8 Percentile:71.07(Environmental Sciences)After the Fukushima nuclear accident in Japan, a number of practical activities related to public understanding (PU) of radiation risks were implemented inside and outside Fukushima Prefecture. The various noteworthy approaches and strategies behind those practical activities have not been organized and made explicit thus far. In this study, we have organized the noteworthy practical activities related to PU of radiation risks following the Fukushima nuclear accident, and discussed them mainly from the standpoints of communication strategies and approaches. As several examples demonstrate, efforts to contextualize and localize radiation risk in various forms were observed during post-accident recovery in Fukushima, and these efforts were confirmed, through actual experiences, to be an important component of effective PU activities of radiation risks. Community-based or citizen science approaches, such as having affected residents or citizens to measure radioactivity, have contributed to the PU of radiological situations, but some challenges, such as ethical aspects and the handling of uncertainty, have also been revealed. In the era of information and communications technology, a number of citizens, experts, and agencies have made social media a popular platform for disseminating radiation risk messages to the public and have demonstrated that social media can play an important role in providing radiological risk information. The knowledge and lessons learned from the practical activities discussed in this study can be useful in enhancing PU of risks not only radiation but also other stressors such as toxic chemicals, preparing future disasters and supporting risk communication plans during recovery periods after disasters.
Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:9 Percentile:55.54(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Iida, Kazuki*; Yoshida, Hiroyuki*; Okabe, Hirotaka*; Katayama, Naoyuki*; Ishii, Yuto*; Koda, Akihiro*; Inamura, Yasuhiro; Murai, Naoki; Ishikado, Motoyuki*; Kadono, Ryosuke*; et al.
Scientific Reports (Internet), 9(1), p.1826_1 - 1826_9, 2019/02
Times Cited Count:13 Percentile:65.50(Multidisciplinary Sciences)Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:13 Percentile:98.52(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:3 Percentile:85.06(Physics, Atomic, Molecular & Chemical)Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:89.76(Physics, Atomic, Molecular & Chemical)