Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 219

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of displacement cross section for proton in the kinetic energy range from 0.4 GeV to 3 GeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 33, p.011050_1 - 011050_6, 2021/03

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and aluminum and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurements of displacement cross section of tungsten under 389-MeV proton irradiation and thermal damage recovery

Iwamoto, Yosuke; Yoshida, Makoto*; Matsuda, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Yashima, Hiroshi*; Yabuuchi, Atsushi*; Shima, Tatsushi*

Materials Science Forum, 1024, p.95 - 101, 2021/03

To predict the lifetime of target materials in high-energy radiation environments at spallation neutron sources, radiation transport codes such as PHITS are used to calculate the displacements per atom (DPA) value. In this work, to validate calculated DPA values of tungsten, we implemented 0.25-mm-diameter wire sample of tungsten in a proton irradiation device with a Gifford-McMahon cryocooler and measured the defect-induced electrical resistivity changes related to the displacement cross section using 389-MeV protons at 10 K. As well as our previous results for aluminum and copper, calculated results with defect production efficiencies provided good agreements with experimental data. Based on measurements of recovery of the defects through annealing, about 85% of the damage remained at 60 K, and the same tendency is observed in other experimental result for reactor neutron irradiation.

Journal Articles

Measurement of displacement cross-sections of copper and iron for proton with kinetic energies in the range 0.4 - 3 GeV

Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

Journal of Nuclear Science and Technology, 57(10), p.1141 - 1151, 2020/10

 Times Cited Count:3 Percentile:76.41(Nuclear Science & Technology)

To estimate the structural damages of materials in accelerator facilities, displacement per atom (dpa) is widely employed as a damage index, calculated based on the displacement cross-section obtained using a calculation model. Although dpa is applied as standard, the experimental data of the displacement cross-section for a proton in the energy region above 20 MeV are scarce. Among the calculation models, difference of about factor 8 exist, so that the experimental data of the cross-section are crucial to validate the model. To obtain the displacement cross-section, we conducted experiments at J-PARC. The displacement cross-section of copper and iron was successfully obtained for a proton projectile with the kinetic energies, 0.4 - 3 GeV. The results were compared with those obtained using the widely utilized Norgertt-Robinson-Torrens (NRT) model and the athermal-recombination-corrected (arc) model based on molecular dynamics. It was found that the NRT model overestimates the present displacement cross-section by 3.5 times. The calculation results obtained using with the arc model based on the Nordlund parameter show remarkable agreement with the experimental data. It can be concluded that the arc model must be employed for the dpa calculation for the damage estimation of copper and iron.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

EPJ Web of Conferences, 239, p.06006_1 - 06006_4, 2020/09

 Times Cited Count:0 Percentile:0.19

R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.

Journal Articles

Measurement of defect-induced electrical resistivity change of tungsten wire at cryogenic temperature using high-energy proton irradiation

Iwamoto, Yosuke; Yoshida, Makoto*; Matsuda, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Yashima, Hiroshi*; Yabuuchi, Atsushi*; Kinomura, Atsushi*; Shima, Tatsushi*

JPS Conference Proceedings (Internet), 28, p.061003_1 - 061003_5, 2020/02

To predict the lifetime of target materials in high-energy radiation environments at spallation neutron sources, radiation transport codes such as PHITS are used to calculate the displacements per atom (DPA) value. In this work, to validate calculated DPA values of tungsten, we implemented 0.25-mm-diameter wire sample of tungsten in a proton irradiation device with a Gifford-McMahon cryocooler and measured the defect-induced electrical resistivity changes related to the displacement cross section using 389-MeV protons at 10 K. In comparison with experimental data under 1.1 and 1.9 GeV proton irradiation, we found that damage rate of tungsten increases with proton energy due to increase the number of secondary particle s produced by nuclear reactions.

Journal Articles

Measurement of displacement cross section of structural materials utilized in the proton accelerator facilities with the kinematic energy above 400 MeV

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*

JPS Conference Proceedings (Internet), 28, p.061004_1 - 061004_6, 2020/02

no abstracts in English

Journal Articles

Hadronic Paschen-Back effect in charmonium

Iwasaki, Sachio; Oka, Makoto; Suzuki, Kei*; Yoshida, Tetsuya*

AIP Conference Proceedings 2130, p.050001_1 - 050001_8, 2019/07

 Times Cited Count:0 Percentile:0.1

We find a novel phenomenon induced by the interplay between a strong magnetic field and finite orbital angular momenta in hadronic systems, which is analogous to the Paschen-Back effect observed in the field of atomic physics. This effect allows the wave functions to drastically deform. We discuss anisotropic decay from the deformation as a possibility to measure the strength of the magnetic field in heavy-ion collision at LHC, RHIC and SPS, which has not experimentally been measured. As an example we investigate charmonia with finite orbital angular momentum in a strong magnetic field. We calculate the mass spectra and mixing rate. To obtain anisotropic wave functions, we apply the cylindrical Gaussian expansion method, where the Gaussian bases to expand the wave functions have different widths along transverse and longitudinal directions in the cylindrical coordinate.

Journal Articles

Hadronic Paschen-Back effect in P-wave charmonia under strong magnetic fields

Iwasaki, Sachio; Oka, Makoto; Suzuki, Kei*; Yoshida, Tetsuya*

International Journal of Modern Physics; Conference Series (Internet), 49, p.1960002_1 - 1960002_6, 2019/07

 Times Cited Count:0 Percentile:0.1

The hadronic Paschen-Back effects in P-wave charmonia are analyzed using the constituent quark models in strong magnetic field.

Journal Articles

Hadronic Paschen-Back effect

Iwasaki, Sachio; Oka, Makoto; Suzuki, Kei*; Yoshida, Tetsuya*

Physics Letters B, 790, p.71 - 76, 2019/03

 Times Cited Count:7 Percentile:76.03(Astronomy & Astrophysics)

We find a novel phenomenon induced by the interplay between a strong magnetic field and finite orbital angular momenta in hadronic systems, which is analogous to the Paschen-Back effect observed in the field of atomic physics. This effect allows the wave functions to drastically deform. We discuss anisotropic decay from the deformation as a possibility to measure the strength of the magnetic field in heavy-ion collision at LHC, RHIC and SPS, which has not experimentally been measured. As an example we investigate charmonia with finite orbital angular momentum in a strong magnetic field. We calculate the mass spectra and mixing rate. To obtain anisotropic wave functions, we apply the cylindrical Gaussian expansion method, where the Gaussian bases to expand the wave functions have different widths along transverse and longitudinal directions in the cylindrical coordinate.

Journal Articles

Measurement of displacement cross sections of aluminum and copper at 5 K by using 200 MeV protons

Iwamoto, Yosuke; Yoshida, Makoto*; Yoshiie, Toshimasa*; Satoh, Daiki; Yashima, Hiroshi*; Matsuda, Hiroki; Meigo, Shinichiro; Shima, Tatsushi*

Journal of Nuclear Materials, 508, p.195 - 202, 2018/09

 Times Cited Count:8 Percentile:81.13(Materials Science, Multidisciplinary)

To validate the displacement damage model in radiation transport codes used for the estimation of radiation damages at accelerator facilities, we measured electrical resistance increase of aluminum and copper induced by radiation defects under the cryogenic 200 MeV proton irradiation. The irradiation device had the structure to cool two irradiation samples at same time using thermal conductance. The aluminum and copper wire with 250 $$mu$$m diameter was sandwiched between two AlN plates with excellent thermal conductivity and electrical insulation. As a result, temperature of irradiation samples was kept at below 5 K under proton irradiation with beam intensity below 3 nA. The experimental displacement cross section agreed with calculated results with defect production efficiency.

Journal Articles

Radiation damage calculation in PHITS and benchmarking experiment for cryogenic-sample high-energy proton irradiation

Iwamoto, Yosuke; Matsuda, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Nakamoto, Tatsushi*; Yoshida, Makoto*; Ishi, Yoshihiro*; Kuriyama, Yasutoshi*; Uesugi, Tomonori*; Yashima, Hiroshi*; et al.

Proceedings of 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2018) (Internet), p.116 - 121, 2018/07

The radiation damage model in the radiation transport code PHITS has been developed to calculate the basic data of the radiation damage including the energy of the target Primary Knock on Atom (PKA). For the high-energy proton incident reactions, a target PKA created by the secondary particles was more dominant than a target PKA created by the projectile. To validate the radiation damage model in metals irradiated by $$>$$100 MeV protons, we developed a proton irradiation device with a Gifford-McMahon cryocooler to cryogenically cool wire samples. By using this device, the defect-induced electrical resistivity changes related to the DPA cross section of copper and aluminum were measured under irradiation with 125 and 200 MeV protons at cryogenic temperature. A comparison of the experimental data with the calculated results indicates that the DPA cross section with defect production efficiencies provide better quantitative descriptions.

Journal Articles

Measurement of displacement cross-section for structural materials in High-Power Proton Accelerator Facility

Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.499 - 501, 2018/06

no abstracts in English

Journal Articles

Observation of momentum-resolved charge fluctuations proximate to the charge-order phase using resonant inelastic X-ray scattering

Yoshida, Masahiro*; Ishii, Kenji; Naka, Makoto*; Ishihara, Sumio*; Jarrige, I.*; Ikeuchi, Kazuhiko*; Murakami, Yoichi*; Kudo, Kazutaka*; Koike, Yoji*; Nagata, Tomoko*; et al.

Scientific Reports (Internet), 6, p.23611_1 - 23611_8, 2016/03

 Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)

JAEA Reports

Studies on the reconstruction of the concept of rock mass around the tunnel; Japanese fiscal year, 2014 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Aoki, Kenji*; Tochiyama, Osamu*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Yoshida, Hidekazu*; Murakami, Hiroaki; Sasao, Eiji

JAEA-Research 2015-017, 54 Pages, 2015/12

JAEA-Research-2015-017.pdf:17.3MB

This report is concerned with research to reconstruct more realistic near-field (NF) concept for the geological disposal of radioactive waste. This year is the final year of this committee activities. So we have carried out the summary on Re-thinking of NF concept and its technical basis. Cooperation between the study fields and combination of various science and technology and evaluation methods are one of the important technical bases of NF concept. In addition, since the "Great East Japan Earthquake 2011", the safety paradigm has shifted dramatically. In the reconstruction of realistic NF concept, it is necessary to analyze what security matters whether society has become unacceptable for geological disposal. Committee, we also exchange views on such matters and presented the direction of future research and development for geological disposal.

Journal Articles

Spectrum of heavy baryons in the quark model

Yoshida, Tetsuya*; Hiyama, Emiko*; Hosaka, Atsushi*; Oka, Makoto; Sadato, Katsunori*

Physical Review D, 92(11), p.114029_1 - 114029_19, 2015/12

 Times Cited Count:115 Percentile:98.76(Astronomy & Astrophysics)

Single- and double-heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions: (1) the color-Coulomb term depends on quark masses and (2) an antisymmetric $$LS$$ (spin-orbit) force is introduced. Model parameters are fixed by the strange baryon spectra, $$Lambda$$ and $$Sigma$$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, and, further, to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy-quark-symmetry ones.

Journal Articles

Elemental analysis system with negative-muon beam

Osawa, Takahito; Ninomiya, Kazuhiko*; Yoshida, Go*; Inagaki, Makoto*; Kubo, Kenya*; Kawamura, Naritoshi*; Miyake, Yasuhiro*

JPS Conference Proceedings (Internet), 8, p.025003_1 - 025003_6, 2015/09

We report a new elemental analysis system that uses an intense negative-muon beam at J-PARC Materials and Life Science Experimental Facility, Muon Science Establishment. This paper presents the preliminary results of measurements for meteorites and standard material. The main system components are a water-cooled electromagnet, an Al flight tube, an Al sample chamber, a lead shielding body, and a Ge detector. Optimum currents for the electromagnet were determined by recording beam profiles with a CCD camera; the muon beam was shaped by collimators. The background and signal-to-noise ratio was significantly better than that obtained in a previous study, and all significant elements in the meteorite and standard samples were detected. Thus, this system can be used for muonic X-ray analysis of extraterrestrial materials.

Journal Articles

The Development of a non-destructive analysis system with negative muon beam for industrial devices at J-PARC MUSE

Tampo, Motonobu*; Hamada, Koji*; Kawamura, Naritoshi*; Inagaki, Makoto*; Ito, Takashi; Kojima, Kenji*; Kubo, Kenya*; Ninomiya, Kazuhiko*; Strasser, P.*; Yoshida, Go*; et al.

JPS Conference Proceedings (Internet), 8, p.036016_1 - 036016_6, 2015/09

Journal Articles

Model magnet development of D1 beam separation dipole for the HL-LHC upgrade

Nakamoto, Tatsushi*; Sugano, Michinaka*; Xu, Q.*; Kawamata, Hiroshi*; Enomoto, Shun*; Higashi, Norio*; Idesaki, Akira; Iio, Masami*; Ikemoto, Yukio*; Iwasaki, Ruri*; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4000505_1 - 4000505_5, 2015/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Recently, development of superconducting magnet system with high radiation resistance has been demanded for application in accelerator facilities such as CERN LHC. In order to realize superconducting magnet system with high radiation resistance, it is necessary to develop electrical insulator with high radiation resistance because the electrical insulator is made of organic materials whose radiation resistance is inferior to that of inorganic materials. We developed a glass fiber reinforced plastic with bismaleimide-triazine resin. The developed material showed excellent radiation resistance; the material evolved gases of 5$$times$$10 $$^{-5}$$mol/g and maintained flexural strength of 640MPa (90% of initial value).

Journal Articles

NHEJ repair rather than HR repair is the primary function to target to enhance radiosensitization at high LET values

Takahashi, Akihisa*; Kubo, Makoto*; Igarashi, Chie*; Yoshida, Yukari*; Funayama, Tomoo; Kobayashi, Yasuhiko; Nakano, Takashi*

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 82, 2015/03

DNA double-strand breaks (DSBs) induced by ionizing radiation pose a major threat to cell survival. The cell can respond to the presence of DSBs, through two major repair pathways: Homologous recombination (HR) and non-homologous end-joining (NHEJ). Higher levels of cell death are induced by high-LET radiation when compared to low-LET radiation, even at the same doses because of less effective or more inefficient DNA repair. In this study, we examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Wild-type cells and HR deficient (but NHEJ proficient) cells exhibited the high RBE values at LET values of 108 keV/$$mu$$ m. The RBE value for each cell type decreased with increasing LET values over 200 keV/$$mu$$m. Although NHEJ proficient cells had an almost constant SER value, NHEJ deficient cells showed a high SER value when compared to NHEJ proficient cells, even with increasing LET values.

Journal Articles

Measurement of the displacement cross-section of copper irradiated with 125 MeV protons at 12 K

Iwamoto, Yosuke; Yoshiie, Toshimasa*; Yoshida, Makoto*; Nakamoto, Tatsushi*; Sakamoto, Masaaki*; Kuriyama, Yasutoshi*; Uesugi, Tomonori*; Ishi, Yoshihiro*; Xu, Q.*; Yashima, Hiroshi*; et al.

Journal of Nuclear Materials, 458, p.369 - 375, 2015/03

 Times Cited Count:7 Percentile:60.95(Materials Science, Multidisciplinary)

To validate Monte Carlo codes for the prediction of radiation damage in metals irradiated by $$>$$100 MeV protons, defect-induced electrical resistivity changes of copper related to the displacement cross-section were measured with 125 MeV proton irradiation at 12 K. The cryogenic irradiation system was developed with a Gifford-McMahon cryocooler to cool the sample via an oxygen-free high-conductivity copper plate by conduction cooling. The sample was a copper wire with a 250$$mu$$m diameter and 99.999% purity sandwiched between two aluminum nitride ceramic sheets. The resistivity increase did not change during annealing after irradiation below 15 K. The experimental displacement cross-section for 125 MeV irradiation shows similar results to the experimental data for 1.1 and 1.94 GeV. Comparison with the calculated results indicated that the defect production efficiency in Monte Carlo codes gives a good quantitative description of the displacement cross-section in the energy region $$>$$ 100 MeV.

219 (Records 1-20 displayed on this page)