Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1890

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Sampling of radioactive materials remaining in JMTR Reactor Facility

Ouchi, Takuya; Nagata, Hiroshi; Shinoda, Yuya; Yoshida, Hayato; Inoue, Shuichi; Chinone, Marina; Abe, Kazuyuki; Ide, Hiroshi; Watahiki, Shunsuke

JAEA-Technology 2025-006, 25 Pages, 2025/10

JAEA-Technology-2025-006.pdf:1.59MB

In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. Therefore, at the Oarai Nuclear Engineering Institute, in order to contribute to the study of methods for evaluating radioactivity concentrations of the radioactive wastes from nuclear research facilities, samples were taken from radioactive waste that are expected to be buried in the future and radiochemical analysis is used to obtain data on the radioactivity concentration of each nuclide contained in the radioactive waste. This report presents the concept of selecting sample collection targets and summarizes the sampling of radioactive materials conducted at the JMTR reactor facility in fiscal years 2023 and 2024 to obtain data on radioactivity concentrations.

Journal Articles

Experimental simulation of high-temperature and high-pressure annular two-phase flow using an HFC134a-ethanol system; Characterization of disturbance wave flow

Zhang, H.*; Umehara, Yutaro*; Horiguchi, Naoki; Yoshida, Hiroyuki; Eto, Atsuro*; Mori, Shoji*

Energy, 335, p.138090_1 - 138090_18, 2025/10

Nuclear power is a key low-carbon energy source for a carbon-neutral future. In boiling water reactors (BWRs), steam-water annular flow near fuel rods is crucial for reactor safety, but its high-temperature, high-pressure conditions (285$$^{circ}$$C, 7 MPa) make direct measurement challenges. To address this, we used an HFC134a-ethanol system at lower conditions (40$$^{circ}$$C, 0.7 MPa) to simulate BWR annular flow. Using a high-speed camera and the constant electric current method, we analyzed liquid-film characteristics, wave velocity and frequency. We also examined surface tension and interfacial shear stress effects. Furthermore, we proposed a new correlation for base film thickness.

Journal Articles

Speciation of cesium in a radiocesium-bearing microparticle emitted from Unit 1 during the Fukushima nuclear accident by XANES spectroscopy using transition edge sensor

Takahashi, Yoshio*; Miura, Hikaru*; Yamada, Shinya*; Sekizawa, Oki*; Nitta, Kiyofumi*; Hashimoto, Tadashi*; Yomogida, Takumi; Yamaguchi, Akiko; Okada, Shinji*; Itai, Takaaki*; et al.

Journal of Hazardous Materials, 495, p.139031_1 - 139031_19, 2025/09

In this presentation, we analyzed the chemical state of cesium in radiocesium-bearing microparticles (CsMPs) released during the 2011 Fukushima Daiichi Nuclear Power Plant accident using high-resolution X-ray absorption spectroscopy (XANES) and micro X-ray fluorescence ($$mu$$-XRF). The results identified two forms of cesium: one dissolved in glass and the other enriched on the surfaces of internal voids. The latter is considered to have originally existed as a gas and became concentrated during the cooling and solidification of the molten glass. These findings are crucial for understanding the formation process of CsMPs during the accident, as well as for future decommissioning and safety assessments.

Journal Articles

Solidification/stabilization of low-level radioactive wastes including hazardous substances from uranium fuel processing plants

Sato, Junya; Takahashi, Yuta; Sunahara, Jun*; Saito, Toshimitsu*; Yoshida, Yukihiko; Sone, Tomoyuki; Osugi, Takeshi

Progress in Nuclear Science and Technology (Internet), 8, p.307 - 312, 2025/09

Journal Articles

3D visualization in complicated flow channel using deep learning-based bubble detection

Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Gazo Rabo, p.1 - 5, 2025/08

This paper introduces a new measurement technique for visualizing the three-dimensional distribution of bubbles in a complex channel such as a nuclear reactor fuel assembly. Bubbly flow is important in many engineering fields, and especially in nuclear engineering, where bubble behavior significantly affects the performance and safety of nuclear reactors, and thus requires detailed understanding. Conventional rule-based image recognition has difficulty identifying bubbles overlapping in the line-of-sight direction, but in this study, deep learning (Mask R-CNN and Swin Transformer) is used to achieve highly accurate bubble detection with a small amount of training data. Furthermore, the tracking technique using ByteTrack made it possible to track many bubbles with complex motions, and by combining images taken from different viewpoints using two high-speed cameras and reconstructing the 3D shape of the bubbles using the ellipsoid approximation, 3D instantaneous local information such as bubble position, diameter, and velocity was obtained. To eliminate the effects of refraction and obstruction of vision by structures in the channel, a simulated fuel rod was made of a transparent material (PFA tube) with a refractive index similar to that of water, enabling distortion-free imaging and measurement even in channels with complex structures. This enabled 3D visualization of bubble behavior in complex channels, which had been difficult to achieve in the past. Since this technology enables highly accurate 3D visualization with a small number of cameras and a small amount of learning, it is expected to be applied to objects other than bubbles.

Journal Articles

Characteristics of droplet evaporation on high-temperature porous surfaces for estimating cooling time of fuel debris

Yuki, Kohei*; Horiguchi, Naoki; Yoshida, Hiroyuki; Yuki, Kazuhisa*

Mechanical Engineering Journal (Internet), 12(4), p.24-00451_1 - 24-00451_8, 2025/08

Fuel debris at the Fukushima Daiichi nuclear power station is typically cooled under immersion. However, an unexpected significant drop in water level results in coolant contact with high-temperature fuel debris having porous structure. In such scenarios, rapid cooling is essential, yet the thermal behavior at the liquid-solid interface, including capillary phenomena, is not well understood. This paper presents basic research evaluating the evaporation characteristics of droplets upon contact with metallic porous media featuring small pores under 1 mm. We conducted experiments using bronze or stainless steel porous media with pore diameters of 1, 40, or 100 $$mu$$m to derive lifetime curves for droplets. Our findings indicate that Leidenfrost effect is mitigated on porous surfaces as the vapor can escape through the pores. Moreover, in bronze porous media, as the temperature increases, oxide film with a fine structure facilitates capillary action. In contrast, the low wettability of stainless steel porous media prevents capillary action, inhibiting droplet absorption and dispersion into the pores. Consequently, rapid cooling via the capillary action is unlikely if the fuel debris shares similar characteristics with steel porous media. Therefore, for risk management, the cooling system should be established assuming that capillary force does not act in the fuel debris.

Journal Articles

Neutronics/thermal-hydraulics coupling simulation using JAMPAN in a single BWR assembly

Kamiya, Tomohiro; Nagatake, Taku; Ono, Ayako; Tada, Kenichi; Kondo, Ryoichi; Nagaya, Yasunobu; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 12(4), p.24-00461_1 - 24-00461_9, 2025/08

JAEA has developed the JAEA Advanced Multi-Physics Analysis platform for Nuclear systems (JAMPAN) to realize high-fidelity neutronics/thermal-hydraulics coupling simulations. We performed a neutronics/thermal-hydraulics coupling simulation for a single BWR fuel assembly in order to confirm that the MVP/JUPITER coupling through JAMPAN is feasible. As a result, we confirmed that the void fraction and the corresponding change in the heat generation distribution are reasonable qualitatively.

Journal Articles

Discrimination of disposal-restricted materials in waste containers by nondestructive testing and image analysis with high-energy X-ray computed tomography

Murakami, Masashi; Yoshida, Yukihiko; Nango, Nobuhito*; Kubota, Shogo*; Kurosawa, Takuya*; Sasaki, Toshiki

Journal of Nuclear Science and Technology, 62(7), p.650 - 661, 2025/07

 Times Cited Count:1 Percentile:81.49(Nuclear Science & Technology)

Journal Articles

Analysis and recurrence prevention measures on liquid waste transfer piping leakage incidents at the JMTR Facility

Araki, Daisuke; Ouchi, Takuya; Shinoda, Yuya; Yoshida, Hayato; Kawamata, Takanori; Watahiki, Shunsuke

Nihon Hozen Gakkai Dai-21-Kai Gakujutsu Koenkai Yoshishu, 5 Pages, 2025/07

This study was investigated a leakage incident of the liquid waste transfer piping installed to transport radioactive liquid waste from the JMTR (Japan Materials Testing Reactor) building to a storage tank. As a result, it was evaluated that the leakages were caused by the atmospheric stress corrosion cracking (ASCC) or the crevice corrosion under the installed environmental and operational conditions. Based on these findings, countermeasures were implemented following pipe replacement, and the knowledge is being applied to future decommissioning efforts.

Journal Articles

Numerical analysis of natural convective heat transfer with porous medium using JUPITER

Uesawa, Shinichiro; Yamashita, Susumu; Sano, Yoshihiko*; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 62(6), p.523 - 541, 2025/06

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has developed a numerical method with the JUPITER code with a porous medium model to calculate the thermal behavior in PCVs of 1F. In this study, we performed an experiment and numerical simulation of the natural convective heat transfer with the porous medium to validate JUPITER with the porous medium model. In comparison of the temperature and velocity distributions between the experiment and simulation, the temperature distribution in the simulation was in good agreement with the distribution in the experiment except the temperature near the top surface of the porous medium. The velocity distribution also agreed qualitatively with the experimental result. In addition, we also performed the numerical simulations with various effective thermal conductivity models to discuss the effect of the conductivity based on the internal structure of porous media on the natural convective heat transfer. The result indicated that the temperature distribution in the porous medium and the velocity distribution of the natural convection were significantly different for each model, and thus the conductivity of the fuel debris was one of the key parameters of in the thermal behavior analysis in 1F.

Journal Articles

Numerical investigation of the accuracy of a conductance-type wire-mesh sensor for a single spherical bubble and bubbly flow

Uesawa, Shinichiro; Ono, Ayako; Nagatake, Taku; Yamashita, Susumu; Yoshida, Hiroyuki

Journal of Nuclear Science and Technology, 62(5), p.432 - 456, 2025/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

We performed electrostatic simulations of a wire-mesh sensor (WMS) for a single spherical bubble and bubbly flow to clarify the accuracy of the WMS. The electrostatic simulation for the single bubble showed the electric current density distribution and the electric current path from the excited transmitter to receivers for various bubble locations. It indicated systematic errors based on the nonuniform current density distribution around the WMS. The electrostatic simulation for the bubbly flow calculated by the computational fluid dynamics code, JAEA Utility Program for Interdisciplinary Thermal-hydraulics Engineering and Research (JUPITER), indicated that the WMS had difficulty in quantitatively measuring the intermediate values of the instantaneous void fraction between 0 and 1 because they cannot be estimated by previous transformation methods from the WMS signal to the void fraction, such as linear approximation or Maxwell's equation, and have a significant deviation of the void fraction of $$pm$$0.2 for the WMS signal. However, the electrostatic simulation indicated that the time-averaged void fractions around the center of the flow channel can be estimated using linear approximation, and the time-averaged void fraction near the wall of the flow channel can be estimated using Maxwell's equation.

Journal Articles

Achievements and status of the STRAD project for radioactive liquid waste management

Arai, Yoichi; Watanabe, So; Nakahara, Masaumi; Funakoshi, Tomomasa; Hoshino, Takanori; Takahatake, Yoko; Sakamoto, Atsushi; Aihara, Haruka; Hasegawa, Kenta; Yoshida, Toshiki; et al.

Progress in Nuclear Science and Technology (Internet), 7, p.168 - 174, 2025/05

The Japan Atomic Energy Agency (JAEA) has been conducting a project named "Systematic Treatment of RAdioactive liquid waste for Decommissioning (STRAD)" project since 2018 for fundamental and practical studies for treating radioactive liquid wastes with complicated compositions. Fundamental studies have been conducted using genuine liquid wastes accumulated in a hot laboratory of the JAEA called the Chemical Processing Facility (CPF), and treatment procedures for all liquid wastes in CPF were successfully designed on the results obtained. As the next phase of the project, new fundamental and practical studies on primarily organic liquid wastes accumulated in different facilities of JAEA are in progress. This paper reviews the representative achievements of the STRAD project and introduces an overview of ongoing studies.

Journal Articles

Local variation of $$^{7}$$Be deposition in Hokuriku, Japan

Yoshida, Keisuke; Kato, Shingo; Okuyama, Shinichi; Nakano, Masanao; Ishimori, Yuu; Uchida, Kengo*; Inoue, Mutsuo*

Hoken Butsuri (Internet), 60(1), p.40 - 47, 2025/04

Monthly $$^{7}$$Be depositions were examined at four sites in Hokuriku, Japan, from 1992 to 2021. The amounts of $$^{7}$$Be depositions in Hokuriku from October to March differed locally: Depositions at Kanazawa were high (4400 Bq/m$$^{2}$$), a site along the foot of the mountains. $$^{7}$$Be depositions in the plain of Fukui city, along Wakasa Bay, and along the coast of the Noto Peninsula (3300, 2800, and 2500 Bq/m$$^{2}$$, respectively) were equivalent to those of other areas along the coast of the Sea of Japan. The local variation in $$^{7}$$Be depositions in Hokuriku is predominantly ascribed to precipitation, topographic feature, and $$^{7}$$Be concentrations.

Journal Articles

Redox control in arsenic accumulation with organic matter derived from a varved lacustrine deposit in the Jurassic accretionary complexes

Masuki, Yuma*; Katsuta, Nagayoshi*; Naito, Sayuri*; Murakami, Takuma*; Umemura, Ayako*; Fujita, Natsuko; Matsubara, Akihiro*; Minami, Masayo*; Niwa, Masakazu; Yoshida, Hidekazu*; et al.

Journal of Hazardous Materials, 485, p.136843_1 - 136843_10, 2025/03

 Times Cited Count:0 Percentile:0.00(Engineering, Environmental)

Lacustrine deposits have 30-fold higher As abundance than the average crustal deposit. Arsenic is mostly concentrated as discrete horizons deposited in spring and autumn. As-rich layers contain FeAsS, AsS, and As$$_{2}$$S$$_{3}$$ but As-rich hotspots mostly contain FeAsS. As accumulation to sediment is controlled by redox potential with organic matter.

Journal Articles

3D visualization in rod bundle flow channel using deep learning-based bubble detection

Uesawa, Shinichiro; Ono, Ayako; Yoshida, Hiroyuki

Konsoryu, 39(1), p.61 - 71, 2025/03

Bubble visualization using a high-speed video-camera has been used as a measurement technique of bubble diameters and velocities. However, the bubble detection was difficult under the condition of the high void fraction because the overlapping bubbles for the sight direction of the camera increased with the void fraction. Additionally, the visualization for a system with objects, such as rod bundle flow channels, becomes more difficult. In this study, we applied a deep learning-based bubble detection technique with Shifted Window Transformer to bubble images shoot from two directions to identify the bubble size, three-dimensional (3D) positions of bubbles, 3D bubble trajectories in the rod bundle flow channel. Furthermore, we used perfluoroalkoxy alkane tubes with almost the same reflection as water in the channel to visualize the bubbly flow in the whole of the flow channel. We confirmed that the detection technique can segment individual bubbles in overlapping bubbles and bubbles behind the rod. By using the detection results, we estimated the diameter and velocity of each bubble and cross-sectional void fraction.

Journal Articles

Combustion properties of glove-box panel resins under fire accidents

Tashiro, Shinsuke; Uchiyama, Gunzo; Ono, Takuya; Amano, Yuki; Yoshida, Ryoichiro; Watanabe, Koji*; Abe, Hitoshi; Yamane, Yuichi

Nuclear Technology, 211(3), p.429 - 438, 2025/03

 Times Cited Count:1 Percentile:37.73(Nuclear Science & Technology)

Contributing to the confinement safety evaluation of glove-box (GB) connected with high efficiency particle air (HEPA) filters for radioactive materials under fire accidents, combustion tests of a flammable polymer, Polymethyl methacrylate (PMMA), and a flame retardant polymer, Polycarbonate (PC), as typical GB panel resins have been conducted with an engineering-scale combustion apparatus. The combustion properties such as the mass loss rate (MLR) and the heat release rate (HRR) of PMMA and PC were investigated in the combustion tests. In the tests with the same shapes, it was found the followings; MLRs and HRRs of PMMA were larger than those of PC under the same supply flow rate into the combustion cell (Fv); MLRs and HRRs of PMMA and PC were constant under different Fv. Moreover, in the tests of PMMA with different cross section areas (S), MLRs and HRRs were found to be proportional to S. Using these results, the relationships of MLR and HRR to S of PMMA and PC were deduced.

Journal Articles

Atomization mechanisms in the vortex-like flow of a wall-impinging jet in a shallow pool

Horiguchi, Naoki; Yoshida, Hiroyuki; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 37(3), p.033333_1 - 033333_20, 2025/03

 Times Cited Count:0 Percentile:0.00(Mechanics)

In a severe accident, as molten fuel is assumed to behave as a wall-impinging jet in a shallow coolant pool, atomize and accumulate as fuel debris, it is important to reveal the atomization mechanisms of the wall-impinging jet. This study aimed to reveal the atomization mechanisms in the vortex-like flow of a wall-impinging jet in a shallow pool of a liquid-liquid system, focusing on droplet formation as an elementary process of atomization. To quantitatively investigate these mechanisms, we applied quantification methods to three-dimensional interfacial data obtained by a previous experimental study using three-dimensional laser-induced fluorescence with index matching. Detailed observations of the spreading behavior of droplets and vortex-like flow, along with quantitative estimations, found out that the vortex-like flow is the dominant source of droplets on the atomization. Further investigations into the forces acting on the vortex-like flow found out the formation and collapse processes of the vortex-like flow. The accelerations of the normal forces acting on the vortex-like flow can be represented by superficial centrifugal acceleration and gravitational acceleration. Our next analysis focused on investigating droplet formation as the elementary process of atomization. The results showed two droplet formation patterns: liquid-film breaking patterns, wherein droplets directly form from the liquid film, and the surfing pattern, wherein droplets form from interfacial waves on the liquid film. Subsequently, the droplet data were grouped using dimensionless numbers and compared with theoretical lines describing the different droplet formation mechanisms. This comparison revealed the mechanisms of droplet formation within the vortex-like flow.

Journal Articles

Development of a dissolution method for analyzing the elemental composition of fuel debris using sodium peroxide fusion technique

Nakamura, Satoshi; Ishii, Sho*; Kato, Hitoshi*; Ban, Yasutoshi; Hiruta, Kenta; Yoshida, Takuya; Uehara, Hiroyuki; Obata, Hiroki; Kimura, Yasuhiko; Takano, Masahide

Journal of Nuclear Science and Technology, 62(1), p.56 - 64, 2025/01

 Times Cited Count:1 Percentile:37.73(Nuclear Science & Technology)

A dissolution method for analyzing the elemental composition of fuel debris using the sodium peroxide (Na$$_{2}$$O$$_{2}$$) fusion technique has been developed. Herein, two different types of simulated debris materials (such as solid solution of (Zr,RE)O$$_{2}$$ and molten core-concrete interaction products (MCCI)) were taken. At various temperatures, these debris materials were subsequently fused with Na$$_{2}$$O$$_{2}$$ in crucibles, which are made of different materials, such as Ni, Al$$_{2}$$O$$_{3}$$, Fe, and Zr. Then, the fused samples are dissolved in nitric acid. Furthermore, the effects of the experimental conditions on the elemental composition analysis were evaluated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), which suggested the use of a Ni crucible at 923 K as an optimum testing condition. The optimum testing condition was then applied to the demonstration tests with Three Mile Island unit-2 (TMI-2) debris in a shielded concrete cell, thereby achieving complete dissolution of the debris. The elemental composition of TMI-2 debris revealed by the proposed dissolution method has good reproducibility and has an insignificant contradiction in the mass balance of the sample. Therefore, this newly developed reproducible dissolution method can be effectively utilized in practical applications by dissolving fuel debris and estimating its elemental composition.

Journal Articles

Study on the effect of radiation-resistant resin on water radiolysis

Ito, Tatsuya; Nagaishi, Ryuji; Kuwano, Ryo*; Godo, Masao*; Yoshida, Yoichi*

Radiation Physics and Chemistry, 226, p.112198_1 - 112198_5, 2025/01

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

In recent years, the use of radiation-resistant resins of polyimide and polyether ether ketone becomes increasing as vessels for irradiation and unsealed radioisotope experiments. However, in our radiolysis experiments, the possibility of interaction between radiolysis products of water and the resin was found, suggesting concerns that the resin may affect reactions in water in radiation fields. To clarify the interaction, dichromate (Cr$$_{2}$$O$$_{7}$$$$^{2-}$$) reduction and hydrogen peroxide (H$$_{2}$$O$$_{2}$$) formation in $$gamma$$-radiolysis of water were compared with and without the resin. The Cr$$_{2}$$O$$_{7}$$$$^{2-}$$ reduction amount in aqueous solution with the resin became larger than that without the resin at the same dose, indicating the promotion of Cr$$_{2}$$O$$_{7}$$$$^{2-}$$ reduction by the resin. On the other hand, the H$$_{2}$$O$$_{2}$$ formation in pure water with and without an electron scavenger were almost independent of the presence of resin. These suggested the interaction between hydroxyl radical and the resin in contact with water in radiation fields.

Journal Articles

Nanoscale visualization of crack tips inside molten corium-concrete interaction debris using 3D-FIB-SEM with multiphase positional misalignment correction

Miyata, Hokata*; Yoshida, Kenta*; Konashi, Kenji*; Du, Y.*; Kitagaki, Toru; Shobu, Takahisa; Shimada, Yusuke*

Microscopy, p.dfaf005_1 - dfaf005_10, 2025/00

 Times Cited Count:0 Percentile:0.00(Microscopy)

1890 (Records 1-20 displayed on this page)