Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Preliminary test for Mo recycling system in $$^{99}$$Mo manufacturing process, 1; Reusability evaluation of Mo absorbent (Joint research)

Kimura, Akihiro; Niizeki, Tomotake*; Kakei, Sadanori*; Chakrova, Y.*; Nishikata, Kaori; Hasegawa, Yoshio*; Yoshinaga, Hideo*; Chakrov, P.*; Tsuchiya, Kunihiko

JAEA-Technology 2013-025, 40 Pages, 2013/10

JAEA-Technology-2013-025.pdf:2.62MB

Neutron Irradiation and Testing Reactor Center has developed the production of a medical isotope of $$^{99}$$Mo, the parent nuclide of $$^{99m}$$Tc by the (n,$$gamma$$) method using JMTR. The (n,$$gamma$$) method has an advantage of easy manufacturing process and low radioactive wastes generation. However, the low radioactivity concentration of $$^{99m}$$Tc is remaining as an issue. Therefore, PZC and PTC have been developed as adsorbent of molybdenum. Meanwhile, it is necessary to recycle the absorbent and Mo for the reduction of the radioactive waste of used-adsorbent and the effective use of limited resources, respectively. This report summarizes results of the synthesis of Mo adsorbents such as PZC and PTC, and the performance tests.

Journal Articles

Mo recycling property from generator materials with irradiated molybdenum

Kakei, Sadanori*; Kimura, Akihiro; Niizeki, Tomotake*; Ishida, Takuya; Nishikata, Kaori; Kurosawa, Makoto; Yoshinaga, Hideo*; Hasegawa, Yoshio*; Tsuchiya, Kunihiko

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 7 Pages, 2013/10

The Japan Materials Testing Reactor (JMTR) is expected to contribute to the expansion of industrial utilization, such as the domestic production of $$^{99}$$Mo for the medical diagnosis medicine $$^{rm 99m}$$Tc. Production by the (n, $$gamma$$) method is proposed as domestic $$^{99}$$Mo production in JMTR because of the low amount of radioactive wastes and the easy $$^{99}$$Mo/$$^{rm 99m}$$Tc production process. Molybdenum oxide (MoO$$_{3}$$) pellets, poly zirconium compounds (PZC) and poly titanium compounds (PTC) are used as the irradiation target and generator for the production of $$^{99}$$Mo/$$^{rm 99m}$$Tc by the (n, $$gamma$$) method. However, it is necessary to use the enriched $$^{98}$$MoO$$_{3}$$, which is very expensive, to increase the specific activity of $$^{99}$$Mo. Additionally, a large amount of used PZC and PTC is generated after the decay of $$^{99}$$Mo. Therefore, this recycling technology of used PZC/PTC has been developed to recover molybdenum (Mo) as an effective use of resources and a reduction of radioactive wastes. The total Mo recovery rate of this process was 95.8%. From the results of the hot experiments, we could demonstrate that the recovery of MoO$$_{3}$$ and the recycling of PZC are possible. In the future, the equipment of recovering Mo will be installed in JMTR-Hot Cell, and this recycling process will be able to contribute to the reduction of production costs of $$^{rm 99m}$$Tc and the reduction of radioactive wastes.

Journal Articles

Development of $$^{99}$$Mo-$$^{rm 99m}$$Tc domestic production with high-density MoO$$_{3}$$ pellets by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Tanase, Masakazu*; Takeuchi, Nobuhiro*; Kobayashi, Masaaki*; Hasegawa, Yoshio*; Yoshinaga, Hideo*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 10 Pages, 2012/10

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n, $$gamma$$) method, a parent nuclide of $$^{rm 99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries. The R&D on production method of $$^{99}$$Mo -$$^{rm 99m}$$Tc has been performed with Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{rm 99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{rm 99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo -$$^{rm 99m}$$Tc.

Oral presentation

Development of irradiation technology for restart of JMTR, 2; Recycling of molybdenum from $$^{99m}$$Tc generators and reducing of radioactive waste

Yoshinaga, Hideo*; Kakei, Sadanori*; Tanimoto, Masataka; Kimura, Akihiro; Tsuchiya, Kunihiko

no journal, , 

JP, 2010-152220   Patent publication (In Japanese)

no abstracts in English

Oral presentation

Effect on sintering property of MoO$$_{3}$$ pellets of different MoO$$_{3}$$ powders

Nishikata, Kaori; Kimura, Akihiro; Kato, Yoshiaki; Kurosawa, Makoto; Ishida, Takuya; Tsuchiya, Kunihiko; Kakei, Sadanori*; Yoshinaga, Hideo*; Niizeki, Tomotake*; Hasegawa, Yoshio*

no journal, , 

no abstracts in English

Oral presentation

Effect on sintering property of MoO$$_{3}$$ pellets from different MoO$$_{3}$$ powders

Nishikata, Kaori; Kimura, Akihiro; Kakei, Sadanori*; Niizeki, Tomotake*; Ishida, Takuya; Yoshinaga, Hideo*; Hasegawa, Yoshio*; Tsuchiya, Kunihiko

no journal, , 

Every year in Japan, nuclear medical of about 900,000 cases are carried out using technetiume-99m ($$^{99m}$$Tc). It is ranked as the second in the world. But all of the $$^{99m}$$Tc is imported from the other countries. Therefore, we are developing the (n, $$gamma$$) method for $$^{99}$$Mo production, as part of "increase of industrial use" in resumed operations after restart of Japan Materials Tasting Reactor (JMTR). In the study to establish the $$^{99}$$Mo production method through the (n, $$gamma$$) process domestically using the JMTR, three different MoO$$_{3}$$ powders such as fresh, recycled and $$^{98}$$Mo enriched ones were selected, and characterized as in SEM and sintering. As a result, the high dense MoO$$_{3}$$ pellet manufactured by the fresh powder attained over 90%T. D. at the sintering temperature of 500$$^{circ}$$C. On the other hand, pellets manufactured by the other powders needs sintering temperature above 580$$^{circ}$$C to attain over 90%T.D., resulting in an influence on the particle size and shape dependences for the sintering property.

Oral presentation

Fabrication technique development of high-density MoO $$_{3}$$ pellets for $$^{99}$$Mo/ $$^{99m}$$Tc production

Nishikata, Kaori; Kimura, Akihiro; Kato, Yoshiaki; Kurosawa, Makoto; Ishida, Takuya; Tsuchiya, Kunihiko; Kakei, Sadanori*; Yoshinaga, Hideo*; Niizeki, Tomotake*; Hasegawa, Yoshio*

no journal, , 

no abstracts in English

Oral presentation

Molybdenum adsorption and recovery properties of alumina adsorbent for $$^{99}$$Mo/$$^{99m}$$Tc generator

Suzuki, Yoshitaka; Namekawa, Yoji*; Kitagawa, Tomoya*; Kakei, Sadanori*; Matsukura, Minoru*; Yoshinaga, Hideo*; Mimura, Hitoshi*; Tsuchiya, Kunihiko

no journal, , 

no abstracts in English

8 (Records 1-8 displayed on this page)
  • 1