Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Microscopic origin of the spin-reorientation transition in the kagome topological magnet TbMn$$_{6}$$Sn$$_{6}$$

Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Deng, G.*; et al.

Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01

 Times Cited Count:0

Journal Articles

A Colossal barocaloric effect induced by the creation of a high-pressure phase

Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.

Materials Horizons, 10(3), p.977 - 982, 2023/03

 Times Cited Count:5 Percentile:87.86(Chemistry, Multidisciplinary)

As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF$$_{6}$$ exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.

Journal Articles

Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$

Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.

Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12

 Times Cited Count:3 Percentile:28(Multidisciplinary Sciences)

Journal Articles

Assessment of radioactive contamination and effectiveness of remedial measures in urban environments, Report of Working Group 2, Modelling and Data for Radiological Impact Assessments (MODARIA) Programme

Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Grsic, Z.*; Halsall, C.*; Heinrich, G.*; Helebrant, J.*; Hettrich, S.*; Ku$v{c}$a, P.*; Mancini, F.*; et al.

IAEA-TECDOC-2001, 226 Pages, 2022/06

The IAEA organized a programme from 2012 to 2015 entitled Modelling and Data for Radiological Impact Assessments (MODARIA), which aimed to improve capabilities in the field of environmental radiation dose assessment by acquiring improved data, model testing and comparison of model inputs, assumptions and outputs, reaching a consensus on modelling philosophies, aligning approaches and parameter values, developing improved methods and exchanging information. This publication describes the activities of Working Group 2, Exposures in Contaminated Urban Environments and Effect of Remedial Measures.

Journal Articles

Urban Working Groups in the IAEA's model testing programmes; Overview from the MODARIA I and MODARIA II programmes

Thiessen, K. M.*; Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Federspiel, L.; Gra$v{s}$i$v{c}$, B.*; Grsic, Z.*; Helebrant, J.*; Hettrich, S.*; Hulka, J.*; et al.

Journal of Radiological Protection, 42(2), p.020502_1 - 020502_8, 2022/06

 Times Cited Count:5 Percentile:78.52(Environmental Sciences)

Journal Articles

Fine structure in the $$alpha$$ decay of $$^{223}$$U

Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.

Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01

 Times Cited Count:11 Percentile:79.42(Astronomy & Astrophysics)

Journal Articles

Liquid-like thermal conduction in intercalated layered crystalline solids

Li, B.; Wang, H.*; Kawakita, Yukinobu; Zhang, Q.*; Feygenson, M.*; Yu, H. L.*; Wu, D.*; Ohara, Koji*; Kikuchi, Tatsuya*; Shibata, Kaoru; et al.

Nature Materials, 17(3), p.226 - 230, 2018/03

 Times Cited Count:121 Percentile:96.83(Chemistry, Physical)

Journal Articles

Development of a GEM-TPC for H-dibaryon search experiment at J-PARC

Sako, Hiroyuki; Ahn, J. K.*; Baek, K. H.*; Bassalleck, B.*; Fujioka, H.*; Guo, L.*; Hasegawa, Shoichi; Hicks, K.*; Honda, R.*; Hwang, S. H.*; et al.

Journal of Instrumentation (Internet), 9(4), p.C04009_1 - C04009_10, 2014/04

 Times Cited Count:3 Percentile:16.04(Instruments & Instrumentation)

A TPC has been developed for J-PARC E42 experiment to search for H-dibaryon in ($$K^-$$, $$K^+$$) reaction. An event with 2 $$pi^-$$ and 2 protons decaying from H-dibaryon is searched for inside the TPC. The TPC has octagonal prism shape drift volume with about 50 cm diameter with 55 cm drift length filled with Ar-CH$$_{4}$$ (90:10) gas. At the end of the drift volume, 3-layer GEMs are equipped. In order to analyze momenta of produced particles, the TPC is applied with 1 T dipole magnetic field parallel to the drift electric field with a superconducting Helmholz magnet. In order to maximize the acceptance of H-dibaryon events, a diamond target is installed inside the TPC drift volume, in a cylindrical hole opened from the top to the middle of the drift volume. Since extremely high-rate $$K^-$$ beam is directly injected into the TPC drift volume to the target, a gating grid and GEMs are adopted to suppress positive-ion feedback.

Journal Articles

Simultaneous generation of ions and high-order harmonics from thin conjugated polymer foil irradiated with ultrahigh contrast laser

Choi, I. W.*; Kim, I. J.*; Pae, K. H.*; Nam, K. H.*; Lee, C.-L.*; Yun, H.*; Kim, H. T.*; Lee, S. K.*; Yu, T. J.*; Sung, J. H.*; et al.

Applied Physics Letters, 99(18), p.181501_1 - 181501_3, 2011/11

 Times Cited Count:17 Percentile:57.65(Physics, Applied)

We report the manufacturing of a thin foil target made of conjugated polymer, and the simultaneous observation of laser accelerated ions and second harmonic radiation, when irradiated with ultrahigh-contrast laser pulse at a maximum intensity of 4$$times$$10$$^{19}$$ W/cm$$^{2}$$. Maximum proton energy of 8 MeV is achieved along the target normal direction. Strong second harmonic with over 6% energy ratio compared to fundamental is emitted along the specular direction. Two-dimensional particle-in-cell simulations confirm the simultaneous generation of protons and high-order harmonics, which demonstrates the feasibility of applications requiring particle and radiation sources at once, effectively using the same laser and target.

Journal Articles

Guiding and confining fast electrons by transient electric and magnetic fields with a plasma inverse cone

Lei, A. L.*; Cao, L. H.*; Yang, X. Q.*; Tanaka, Kazuo*; Kodama, Ryosuke*; He, X. T.*; Mima, Kunioki*; Nakamura, Tatsufumi; Norimatsu, Takayoshi*; Yu, W.*; et al.

Physics of Plasmas, 16(2), p.020702_1 - 020702_4, 2009/02

 Times Cited Count:12 Percentile:42.72(Physics, Fluids & Plasmas)

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong field s are of importance for fast ignition related research.

Journal Articles

Efficient production of a collimated MeV proton beam from a Polyimide target driven by an intense femtosecond laser pulse

Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Orimo, Satoshi; Ogura, Koichi; Ma, J.-L.; Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Kiriyama, Hiromitsu; et al.

Physics of Plasmas, 15(5), p.053104_1 - 053104_10, 2008/05

 Times Cited Count:45 Percentile:83.73(Physics, Fluids & Plasmas)

High-flux energetic protons whose maximum energies are up to 4 MeV are generated by an intense femtosecond Titanium Sapphire laser pulse interacting with a 7.5, 12.5, and 25$$mu$$m thick Polyimide tape targets. The laser pulse energy is 1.7 J, duration is 34 fs, and intensity is 3$$times$$10$$^{19}$$Wcm$$^{-2}$$. The amplified spontaneous emission (ASE) has the intensity contrast ratio of 4$$times$$10$$^{-8}$$. The conversion efficiency from laser energy into proton kinetic energies of $$sim$$3% is achieved, which is comparable or even higher than those achieved in the previous works with nanometer-thick targets and the ultrahigh contrast laser pulses ($$sim$$10$$^{-10}$$).

Journal Articles

The H-Invitational Database (H-InvDB); A Comprehensive annotation resource for human genes and transcripts

Yamasaki, Chisato*; Murakami, Katsuhiko*; Fujii, Yasuyuki*; Sato, Yoshiharu*; Harada, Erimi*; Takeda, Junichi*; Taniya, Takayuki*; Sakate, Ryuichi*; Kikugawa, Shingo*; Shimada, Makoto*; et al.

Nucleic Acids Research, 36(Database), p.D793 - D799, 2008/01

 Times Cited Count:51 Percentile:71.25(Biochemistry & Molecular Biology)

Here we report the new features and improvements in our latest release of the H-Invitational Database, a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of fulllength cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 protein-coding and 642 non-protein-coding loci; 858 transcribed loci overlapped with predicted pseudogenes.

Journal Articles

Development of laser driven proton sources and their applications

Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Mori, Michiaki; Ma, J.-L.; Pirozhkov, A. S.; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Proceedings of 7th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR 2007) (CD-ROM), p.77 - 79, 2007/00

We are developing a proton accelerator using an intense lasers with a focused intensity of $$>$$ 10$$^{17}$$ W/cm$$^{2}$$. To monitor proton energy spectra as well as plasma parameters at each laser shot, we are using real time detectors. The proton energy of MeV is stably obtained for applications.

Oral presentation

Simultaneous imaging of a test sample with a MeV proton beam and X-ray driven by an intense laser

Orimo, Satoshi; Yogo, Akifumi; Sagisaka, Akito; Ogura, Koichi; Mori, Michiaki; Pirozhkov, A. S.; Li, Z.*; Ma, J.-L.; Daido, Hiroyuki; Nakamura, Shu*; et al.

no journal, , 

Laser drive ion acceleration generated by thin foil irradiation high intensity laser and it is applications. An intense p-pol. laser was irradiated by the 45 degree incident angle on 3$$times$$10$$^{18}$$Wcm$$^{-2}$$ at 5 microns thickness copper tape target. The proton of a maximum of more 2MeV was generated, and a space spread and the propagation characteristic for energy of the were measured using CR39 with a range filter. Moreover, demonstration of simultaneous imaging by the proton beam and X-rays was measured.

Oral presentation

Efficient production of MeV proton beam from a Polyimide target driven by an intense femto-second laser

Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Orimo, Satoshi; Ogura, Koichi; Ma, J.-L.; Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Kiriyama, Hiromitsu; et al.

no journal, , 

The efficient proton beam whose maximum energy of up to 4 MeV was produced by the 50TW short pulse intensity Ti:Sap laser irradiated on the polyimide target [(C$$_{16}$$H$$_{6}$$O$$_{4}$$N$$_{2}$$)n] with the thicknesses of 7.5$$mu$$m, 12.5$$mu$$m, 25$$mu$$m, which is transparent to the 800 nm laser. The laser parameters are energy of 1.7J, pulse width of 35fs and the intensity of 3$$times$$10$$^{19}$$ Wcm$$^{-2}$$. The contrast of the ASE component is 4$$times$$10$$^{-8}$$. The conversion efficiency from laser energy into the proton kinetic energy is up to $$sim$$3%. This conversion efficiency is comparable or even higher than the results obtained with the same level laser ($$sim$$ J energy) interacts with the nano-meter level ultra thin target. In this paper we discuss on the comparison between our results and other experimental results obtained in other facilities.

15 (Records 1-15 displayed on this page)
  • 1