検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

A Study on convection in molten zone of aluminum alloy during Fe/Al resistance spot welding

伊與田 宗慶*; 松田 朋己*; 佐野 智一*; 茂田 正哉*; 菖蒲 敬久; 湯本 博勝*; Koyama, Takahisa*; Yamazaki, Hiroshi*; 仙波 泰徳*; 大橋 治彦*; et al.

Journal of Manufacturing Processes, 94, p.424 - 434, 2023/05

 被引用回数:3 パーセンタイル:57.26(Engineering, Manufacturing)

Aluminum alloys are increasingly being applied to automobile bodies to reduce the weight of automobiles. In joining steel materials and aluminum alloys using resistance spot welding (RSW), it is important to control the state of intermetallic compounds due to the temperature at the joining interface. In other words, in RSW of Fe/Al dissimilar materials, it is necessary to clarify the heating and cooling phenomena of the interface temperature during joining. Although the convection behavior of the molten aluminum alloy is thought to influence the temperature distribution at the joining interface, there are no studies that have directly observed this phenomenon. In this study, convection in molten zone of aluminum alloy during RSW of steel and aluminum alloy is discussed. Direct observations were attempted in order to clarify the convection behavior of the molten aluminum alloy in RSW of steel and aluminum alloy. The main feature of this experiment is that a real-scale test piece and an RSW apparatus used in actual production were used to observe convection during actual production. The observation experiments were conducted using synchrotron radiation X-ray at SPring-8. During welding, the specimens were irradiated with synchrotron radiation X-ray, and convection was observed from the behavior of tracer particles placed on the specimens. As a results, three types of convection were observed: radial outward convection from the center of the molten zone at the joining interface, convection from the edge of the molten zone toward its center, and weak circulating convection at the edge of the molten zone. And, small convection velocities were generated at the edge of the molten zone. Furthermore, the convection velocity inside the molten zone was calculated to be approximately 1.75 m/s. In addition, it was shown that there is a correlation between convection behavior and the shape of the molten zone.

論文

3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

Pikuz, T.*; Faenov, A.*; 松岡 健之*; 松山 智至*; 山内 和人*; 尾崎 典雅*; Albertazzi, B.*; 犬伏 雄一*; 矢橋 牧名*; 登野 健介*; et al.

Scientific Reports (Internet), 5, p.17713_1 - 17713_10, 2015/12

 被引用回数:38 パーセンタイル:87.97(Multidisciplinary Sciences)

we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies $$sim$$10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution 0.4-2.0 micron for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities.

2 件中 1件目~2件目を表示
  • 1