Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; Kofu, Maiko; Nakajima, Kenji; Wei, Y.*; Zhang, W.*; et al.
Nature Physics, 20(7), p.1097 - 1102, 2024/07
Times Cited Count:3 Percentile:93.28(Physics, Multidisciplinary)Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.
Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05
Times Cited Count:3 Percentile:94.57(Nuclear Science & Technology)Lloveras, P.*; Zhang, Z.*; Zeng, M.*; Barrio, M.*; Kawakita, Yukinobu; Yu, D.*; Lin, S.*; Li, K.*; Moya, X.*; Tamarit, J.-L.*; et al.
Barocaloric Effects in the Solid State; Materials and methods, p.7_1 - 7_30, 2023/10
Times Cited Count:232 Percentile:99.37(Multidisciplinary Sciences)As Chapter 1 of the ebook entitled as "Barocaloric Effects in the Solid State", various plastic crystals (PC) showing colossal barocaloric (BC) effect are introduced. A method to determine the BC response in PCs, thermodynamic origin of BC effects, spectroscopic insights from quasi-elastic neutron scattering and application of PCs are explained.
Titarenko, Yu. E.*; Batyaev, V. F.*; Pavlov, K. V.*; Titarenko, A. Yu.*; Malinovskiy, S. V.*; Rogov, V. I.*; Zhivun, V. M.*; Kulevoy, T. V.*; Chauzova, M. V.*; Khalikov, R. S.*; et al.
Nuclear Instruments and Methods in Physics Research A, 1026, p.166151_1 - 166151_9, 2022/03
Times Cited Count:1 Percentile:22.33(Instruments & Instrumentation)The paper presents the Hg production cross-sections measured by the direct gamma-spectrometry technique in the samples of lead enriched with isotopes 206, 207 and 208, as well as in the samples of natural lead and bismuth, irradiated by protons of 11 energies in the range from 0.04 to 2.6 GeV. The obtained experimental results are compared with the previous measurements, with the TENDL-2019 data-library evaluations and the simulated data by means of the high-energy transport codes MCNP6.1 (CEM03.03), PHITS (INCL4.6/GEM), Geant4 (INCL++/ABLA) and the nuclear reaction code TALYS.
Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:2 Percentile:13.66(Astronomy & Astrophysics)Titarenko, Yu. E.*; Batyaev, V. F.*; Pavlov, K. V.*; Titarenko, A. Yu.*; Malinovskiy, S. V.*; Rogov, V. I.*; Zhivun, V. M.*; Kulevoy, T. V.*; Chauzova, M. V.*; Lushin, S. V.*; et al.
Nuclear Instruments and Methods in Physics Research A, 984, p.164635_1 - 164635_8, 2020/12
Times Cited Count:4 Percentile:40.64(Instruments & Instrumentation)The paper presents the Bi production cross-sections measured by the direct gamma-spectrometry technique in the samples of lead enriched with isotopes 208, 207 and 206, as well as in the samples of natural lead and bismuth, irradiated by protons of 11 energies in the range from 0.04 to 2.6 GeV. The obtained experimental results are compared with the previous measurements, with the TENDL-2019 data-library evaluations and the simulated data by means of the high-energy transport codes MCNP6.1 (CEM03.03), PHITS (INCL4.6/GEM), and Geant4 (INCL++/ABLA). The observed discrepancies between model predictions and experimental data are discussed.
Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Lugaro, M.*; Karakas, A. I.*; Makii, Hiroyuki; Mohr, P.*; Su, J.*; Li, Y. J.*; et al.
Astrophysical Journal, 848(2), p.98_1 - 98_8, 2017/10
Times Cited Count:5 Percentile:20.14(Astronomy & Astrophysics)Yan, S. Q.*; Li, Z. H.*; Wang, Y. B.*; Nishio, Katsuhisa; Makii, Hiroyuki; Su, J.*; Li, Y. J.*; Nishinaka, Ichiro; Hirose, Kentaro; Han, Y. L.*; et al.
Physical Review C, 94(1), p.015804_1 - 015804_5, 2016/07
Times Cited Count:6 Percentile:43.05(Physics, Nuclear)Annadi, A.*; Zhang, Q.*; Renshaw Wang, X.*; Tuzla, N.*; Gopinadhan, K.*; L, W. M.*; Roy Barman, A.*; Liu, Z. Q.*; Srivastava, A.*; Saha, S.*; et al.
Nature Communications (Internet), 4, p.1838_1 - 1838_7, 2013/05
Times Cited Count:102 Percentile:94.74(Multidisciplinary Sciences)Schaffer, M. J.*; Snipes, J. A.*; Gohil, P.*; de Vries, P.*; Evans, T. E.*; Fenstermacher, M. E.*; Gao, X.*; Garofalo, A. M.*; Gates, D. A.*; Greenfield, C. M.*; et al.
Nuclear Fusion, 51(10), p.103028_1 - 103028_11, 2011/10
Times Cited Count:37 Percentile:80.23(Physics, Fluids & Plasmas)Experiments at DIII-D investigated the effects of ferromagnetic error fields similar to those expected from proposed ITER Test Blanket Modules (TBMs). Studied were effects on: plasma rotation and locking; confinement; L-H transition; edge localized mode (ELM) suppression by resonant magnetic perturbations; ELMs and the H-mode pedestal; energetic particle losses; and more. The experiments used a 3-coil mock-up of 2 magnetized ITER TBMs in one ITER equatorial port. The experiments did not reveal any effect likely to preclude ITER operations with a TBM-like error field. The largest effect was slowed plasma toroidal rotation v across the entire radial profile by as much as via non-resonant braking. Changes to global , and were 3 times smaller. These effects are stronger at higher and lower . Other effects were smaller.
Snipes, J. A.*; Schaffer, M. J.*; Gohil, P.*; de Vries, P.*; Fenstermacher, M. E.*; Evans, T. E.*; Gao, X. M.*; Garofalo, A.*; Gates, D. A.*; Greenfield, C. M.*; et al.
no journal, ,
A series of experiments was performed on DIII-D to mock-up the field that will be induced in a pair of ferromagnetic Test Blanket Modules (TBMs) in ITER to determine the effects of such error fields on plasma operation and performance. A set of coils producing both poloidal and toroidal fields was placed inside a re-entrant horizontal port close to the plasma. The coils produce a localized ripple due to the toroidal field (TF) + TBM up to 5.7%, which is more than four times that expected from a pair of representative 1.3 ton TBMs in ITER. The experiments show that the reduction in the toroidal rotation is sensitive to the ripple. On the other hand, the confinement is reduced by up to 15-18% for local ripple 3% but is hardly affected at 1.7% local ripple.
Liang, N.*; Chiang, P.-N.*; Wang, Y.*; Teramoto, Munemasa*; Takagi, Kentaro*; Kondo, Toshiaki*; Koarashi, Jun; Zhang, Y.*; Li, S.*; Fang, J.*; et al.
no journal, ,
Liang, N.*; Zhang, Y.*; Chiang, P.-N.*; Lai, D.*; Teramoto, Munemasa*; Takagi, Kentaro*; Kondo, Toshiaki*; Koarashi, Jun; Wang, Y.*; Li, S.*; et al.
no journal, ,
Liang, N.*; Teramoto, Munemasa*; Takagi, Kentaro*; Kondo, Toshiaki*; Koarashi, Jun; Atarashi-Andoh, Mariko; Hirano, Takashi*; Takahashi, Yoshiyuki*; Takagi, Masahiro*; Ishida, Sachinobu*; et al.
no journal, ,
no abstracts in English