Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhao, X.*; Zhang, Z.*; Hattori, Takanori; Wang, J.*; Li, L.*; Jia, Y.*; Li, W.*; Xue, J.*; Fan, X.*; Song, R.*; et al.
Nature Communications (Internet), 16, p.7713_1 - 7713_8, 2025/08
Times Cited Count:0 Percentile:0.00Caloric effects usually occur in the vicinity of solid-state phase transitions with a limited refrigeration temperature span. Here, we introduce and realize an unprecedented concept -all temperature barocaloric effect, i.e., a remarkable barocaloric effect in KPF
across an exceptionally wide temperature span, from 77.5 to 300 K and potentially down to 4 K, covering typical room temperature, liquid nitrogen, liquid hydrogen, and liquid helium refrigeration regions. The directly measured barocaloric adiabatic temperature change reaches 12 K at room temperature and 2.5 K at 77.5 K upon the release of a 250 MPa pressure. This effect is attributed to a persistent phase transition to a rhombohedral high pressure phases. We depict the thermodynamic energy landscape to account for the structural instability. This unique all-temperature barocaloric effect presents a novel approach to highly applicable solid-state refrigeration technology, transcending the conventional multi-stage scenario.
Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.
Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02
Times Cited Count:9 Percentile:96.17(Nuclear Science & Technology)Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
Times Cited Count:16 Percentile:91.30(Multidisciplinary Sciences)Fang, W.*; Liu, C.*; Zhang, J.*; Xu, P. G.; Peng, T.*; Liu, B.*; Morooka, Satoshi; Yin, F.*
Scripta Materialia, 249, p.116046_1 - 116046_6, 2024/08
Times Cited Count:4 Percentile:65.10(Nanoscience & Nanotechnology)Zhang, Z.*; Hattori, Takanori; Song, R.*; Yu, D.*; Mole, R.*; Chen, J.*; He, L.*; Zhang, Z.*; Li, B.*
Journal of Applied Physics, 136(3), p.035105_1 - 035105_8, 2024/07
Times Cited Count:3 Percentile:55.64(Physics, Applied)Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF
) and sodium hexafluoroarsenate (NaAsF
) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF
is a rhombohedral structure with space group R
and NaAsF
, i.e., F
, E
, and A
. The phase transition temperature varies with pressure at a rate of dT
/dP = 250 and 310 K/GPa for NaPF
and NaAsF
. The pressure-induced entropy changes of NaPF
and NaAsF
are determined to be around 45.2 and 35.6J kg
K
, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.

Liao, J.*; Huang, Z.*; Shangguan, Y.*; Zhang, B.*; Cheng, S.*; Xu, H.*; Kajimoto, Ryoichi; Kamazawa, Kazuya*; Bao, S.*; Wen, J.*
Physical Review B, 109(22), p.224411_1 - 224411_10, 2024/06
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.
Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05
Times Cited Count:7 Percentile:92.92(Nuclear Science & Technology)Guo, B.*; Chen, H.*; Chong, Y.*; Mao, W.; Harjo, S.; Gong, W.; Zhang, Z.*; Jonas, J. J.*; Tsuji, Nobuhiro*
Acta Materialia, 268, p.119780_1 - 119780_11, 2024/04
Times Cited Count:12 Percentile:91.80(Materials Science, Multidisciplinary)Li, X.*; Zhu, R.*; Xin, J.*; Luo, M.*; Shang, S.-L.*; Liu, Z.-K.*; Yin, C.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; et al.
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 84, p.102641_1 - 102641_6, 2024/03
Times Cited Count:0 Percentile:0.00(Thermodynamics)Yu, C.*; Kawakita, Yukinobu; Kikuchi, Tatsuya*; Kofu, Maiko*; Honda, Takashi*; Zhang, Z.*; Zhang, Z.*; Liu, Y.*; Liu, S. F.*; Li, B.*
Journal of Physical Chemistry Letters (Internet), 15(1), p.329 - 338, 2024/01
Times Cited Count:1 Percentile:23.49(Chemistry, Physical)
-Ti alloyZhang, B.*; Xin, S.*; Huang, M.*; Mao, W.; Jia, W.*; Li, Q.*; Li, S.*; Zhang, S.*; Mao, C.*
Materials Science & Engineering A, 890, p.145898_1 - 145898_7, 2024/01
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)A significant increase in the recovery strain of a high-Zr
-Ti alloy from 2.25 % to 5.5 % when decreasing the deformation temperature from 300 K to 77 K is reported in this study. It is found that the super-elasticity of this alloy is independent of the
-grain size at 77 K. The results reveal that a coarse-grained specimen exhibited approximately the same super-elasticity as its ultra-fine grain counterpart at 77 K. The relative easiness of deformation-induced martensitic transformation and dislocation slip was substantially changed at 77 K, with a strong suppression of dislocation slip, which overshadowed the effect of grain refinement on the super-elasticity.
Lloveras, P.*; Zhang, Z.*; Zeng, M.*; Barrio, M.*; Kawakita, Yukinobu; Yu, D.*; Lin, S.*; Li, K.*; Moya, X.*; Tamarit, J.-L.*; et al.
Barocaloric Effects in the Solid State; Materials and methods, p.7_1 - 7_30, 2023/10
Times Cited Count:232 Percentile:99.37(Multidisciplinary Sciences)As Chapter 1 of the ebook entitled as "Barocaloric Effects in the Solid State", various plastic crystals (PC) showing colossal barocaloric (BC) effect are introduced. A method to determine the BC response in PCs, thermodynamic origin of BC effects, spectroscopic insights from quasi-elastic neutron scattering and application of PCs are explained.
Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; Kajimoto, Ryoichi; et al.
Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09
Times Cited Count:26 Percentile:94.85(Multidisciplinary Sciences)Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.
Nature Physics, 19(12), p.1883 - 1889, 2023/09
Times Cited Count:23 Percentile:93.24(Physics, Multidisciplinary)
neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag
SWang, Y.*; Gong, W.; Kawasaki, Takuro; Harjo, S.; Zhang, K.*; Zhang, Z. D.*; Li, B.*
Applied Physics Letters, 123(1), p.011903_1 - 011903_6, 2023/07
Times Cited Count:4 Percentile:40.94(Physics, Applied)Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
Times Cited Count:28 Percentile:91.60(Chemistry, Multidisciplinary)As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF
exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.
isomer in
Hg and
(
2) systematics of neutron transitions across the nuclear chartHuang, H.*; Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Li, Z. H.*; Guo, C. Y.*; Barzakh, A. E.*; Van Duppen, P.*; Andel, B.*; et al.
Physics Letters B, 833, p.137345_1 - 137345_8, 2022/10
Times Cited Count:3 Percentile:39.49(Astronomy & Astrophysics)Liu, B.*; Feng, R.*; Busch, M.*; Wang, S.*; Wu, H.*; Liu, P.*; Gu, J.*; Bahadoran, A.*; Matsumura, Daiju; Tsuji, Takuya; et al.
ACS Nano, 16(9), p.14121 - 14133, 2022/09
Times Cited Count:110 Percentile:98.76(Chemistry, Multidisciplinary)Wang, Q.*; Hu, Q.*; Zhao, C.*; Yang, X.*; Zhang, T.*; Ilavsky, J.*; Kuzmenko, I.*; Ma, B.*; Tachi, Yukio
International Journal of Coal Geology, 261, p.104093_1 - 104093_15, 2022/09
Times Cited Count:13 Percentile:71.44(Energy & Fuels)
decay of the 8
isomer in
UZhang, M. M.*; Tian, Y. L.*; Wang, Y. S.*; Zhang, Z. Y.*; Gan, Z. G.*; Yang, H. B.*; Huang, M. H.*; Ma, L.*; Yang, C. L.*; Wang, J. G.*; et al.
Physical Review C, 106(2), p.024305_1 - 024305_6, 2022/08
Times Cited Count:5 Percentile:56.72(Physics, Nuclear)